Numerical investigation on the performance of double pass two glazed solar air heaters with jet impingement

Author

School of Mechanical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Solar air heaters are the simplest heat exchangers for converting solar irradiation into air enthalpy, but their efficiencies are low because the low density and heat capacity of the working fluid. To improve the performance, a new configuration of jet technique is proposed for heat transfer augmentation. The air jet streaks the heated absorber, which leads to extra turbulence and more rate of convection heat transfer.  This technique is examined numerically here for the first time in a two-glazed double pass solar air heater by the Computational fluid dynamics simulation using the COMSOL Multiphysics. The hydrodynamic and thermal behavior of the heater is obtained by numerical solution of the continuity, momentum, and energy equations for both forced and free convection turbulent air flow based on the k–ε turbulence model. Also, the Laplace equation is solved for obtaining the temperature fields in solid elements. The performance of the proposed solar heater is investigated under different incoming solar heat flux and air mass flow rates. A significant increase in thermal efficiency for double pass solar air heaters with jet impinging technique is seen in comparison to conventional solar collectors. The maximum percentages of efficiency increase for the studied test cases are 10% and 6%, corresponding to 0.02 kg/s and 0.04 kg/s air mass flow rates, respectively.

Keywords


[1] M. Aramesh,  M. Ghalebani, A.  Kasaeian, H. Zamani, G. Lorenzini,  O. Mahian, S. Wongwises, A review of recent advances in solar cooking technology, Renew. Energy. 140 (2019) 419–435. doi:10.1016/j.renene.2019.03.021.
[2] S. A. Kalogirou, Solar thermal collectors and applications, Progress in Energy and Combustion Science, 30 (2004) 231–295. doi:10.1016/j.pecs.2004.02.001.
[3] A.P. Singh, O.P. Singh, Thermo-hydraulic performance enhancement of convex-concave natural convection solar air heaters, Sol. Energy. 183 (2019) 146–161. doi:10.1016/j.solener.2019.03.006.
[4] S. Singh, Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater, Renew. Energy. 145 (2020) 1361–1387. doi:10.1016/j.renene.2019.06.137.
[5] M. Nemś, J. Kasperski, Experimental investigation of concentrated solar air-heater with internal multiple-fin array, Renew. Energy. 97 (2016) 722–730. doi:10.1016/j.renene.2016.06.038.
[6] B. K. Gandhi, K. M. Singh, Experimental and numerical investigations on flow through wedge shape rib roughened duct, Journal of the Institution of Engineers (India): Mechanical Engineering Devision, 90 (2010) 13-18. doi.org/10.1007/s00231-016-1822-5
[7] M. Foruzan Nia, S.A. Gandjalikhan Nassab, A.B. Ansari, Numerical Simulation of Flow and Thermal Behavior of Radiating Gas Flow in Plane Solar Heaters, J. Therm. Sci. Eng. Appl. 12 (2020) 1–8. doi:10.1115/1.4044756.
[8] A.D. Rayeni, S.A.G. Nassab, Effects of Gas Radiation on Thermal Performances of Single and Double Flow Plane Solar Heaters, Int. J. Eng. 33 (2020) 1156–1166. doi:10.5829/ije.2020.33.06c.14.
[9] Y.  Sheikhnejad, S. A.Gandjalikhan Nassab, Enhancement of solar  chimney performance by  passive  vortex  generation ,  Renewable  Energy, 169  (2021)  437-450. doi.org/10.1016/j.renene.2021.01.026
[10] S. A. Gandjalikhan  Nassab, Efficient design  of  converged ducts  in solar  air heaters for higher performance, Heat and Mass Transfer, 2023 (59), 363-375, https://doi.org/10.1007/s00231-022-03228-9
[11] J. Hu, K. Liu, L. Ma, X. Sun, 2018. Parameter optimization of solar air collectors with holes on baffle and analysis of flow and heat transfer characteristics. Sol. Energy 2018(174) 878-889,
[12] T. Brown, 1968. Evaluation of internal heat transfer coefficients for impingement cooled turbine airfoils. Journal of Aircraft, 1968 (6), 203-214,
[13] W. C. Tan, L. H. Saw, H. S. Thiam, J. Xuan, Z. Cai, M. C. Yew, Overview of porous media/metal foam application in fuel cells and solar power systems. Renew. Sustain. Energy Rev. 2018(96) , 181–197. doi.org/10.1016/j.rser.2018.07.032.
[14] C.Choudhury, H. P.Garg, Evaluation of a jet plate solar air heater. Sol. Energy 46 (4)(1991) 199–209. https://doi.org/10.1016/ 0038-092X(91)90064-4.
[15] M. Belusko, W. Saman, F.Bruno,Performance of jet impingement in unglazed air collectors  Sol. Energy 82 (5)(2008) 389–398. https://doi.org/10.1016/j. solener.2007.10.005
[16] Y. Xing, S. Spring, B. Weigand, Experimental and numerical investigation of heat transfer  characteristics of inline and staggered arrays of impinging jets. J. Heat Transf. 132 (9) (2010) 1–11. https://doi.org/10.1115/1.4001633.
 [17] M. Zukowski, Heat transfer performance of a confined single slot jet of air impinging  on a flat surface. Int. J. Heat Mass Transf. 57 (2) (2013) 484–490. https://doi. org/10.1016/j.ijheatmasstransfer.2012.10.069.
[18] M. Zukowski, Experimental investigations of thermal and flow characteristics of a novel  microjet air solar heater. Appl. Energy 142 (2015), 10–20. doi.org/10.1016/j. apenergy.2014.12.052.
[19] R. Chauhan, N. S. Thakur, Investigation of the thermohydraulic performance of impinging jet solar air heater. Energy 2014(68), 255–261. doi.org/10.1016/j. energy.2014.02.059.
[20] R. Chauhan, T. Singh, N. S. Thakur, A. Patnaik,. Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method. Renew. Energy 2016(99), 118–126. doi.org/10.1016/j. renene.2016.06.046.
[21] M. M. Matheswaran, T. V. Arjunan, D. Somasundaram, Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Sol. Energy. 2018, doi.org/10.1016/j.solener.2017.12.036.
[22] T. Rajaseenivasan, S. Ravi Prasanth, M. Salamon Antony, K. Srithar, Experimental investigation on the performance of an impinging jet solar air heater. Alexandria Eng. J. 56 (1) (2017) 63–69. https://doi.org/10.1016/j.aej.2016.09.004
[23] S. Yadav, S. P. Saini, Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate, Solar Energy (208), (2020) 236-248,  https://doi.org/10.1016/j.solener.2020.07.088
[24] A. M. Aboghrara, B.T. H.T.Baharudin, M.A. Alghoul, K. Sopian, N. M. Adam, A. A. Hairuddin, Performance Analysis of Single Pass Solar Air Heater with Jet Impingement on Wavy Shape Corrugated Absorber Plate, Case Studies in Thermal Engineering, 2017 (23), 124-135, doi.org/10.1016/j.csite.2017.04.002
[25] H. M. Abd,O. R. Alomar, M. M. Mohamed Salih, Improving the performance of solar air heater using a new model of V-corrugated absorber plate having perforations jets, 2022 (46), 8130-9144, doi.org/10.1002/er.7715
[26] R. Chauhan , T.Singh , N.S. Thakur, A. Patnaik, Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index
method, Renewable Energy, 2016 (99), 116-126, doi.org/10.1016/j.renene.2016.06.046
[27] F. P. Incropera, D. P. De Witt, Introduction to heat transfer, Forth Edittion (2002), John Wiley and Sons, Newyork.
[28] B. E. Launder, D. B.Spalding, The numerical computation of turbulent flows, Computer methods in applied mechanics and engineering, 3(2) (1974) 269-289. doi.org/10.1016/0045-7825(74)90029-2
[29] A.P. Singh, Akshayveer, A. Kumar, O.P. Singh, Designs for high flow natural convection solar air heaters, Sol. Energy. 193 (2019) 724–737. doi:10.1016/j.solener.2019.10.010.
[30] F. Chabane, M. Noureddine, A. Brima, Experimental study of thermal efficiency of a solar  air  heater with an irregularity element on absorber plate, International Journal of Heat and Technology, 36,(2018) 855-860. doi:10.18280/IJHT.360311
[31] B. M. Ramani, A. Gupta, R. Kumar, Performance of a double pass solar air collector, Solar Energy, 84, (2010) 1929-1937. doi:10.1016/j.solener.2010.07.007
[32] R. Cheesewright, K. J. King, S.  Ziai (1986), Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows. Significant questions in buoyancy affected enclosure or cavity flows, HTD-60, ASME Winter Annual Meeting, Anaheim, December 1986, 75.