Large eddy simulation of propane combustion in a planar trapped vortex combustor

Document Type : Research Paper


School of Mechanical Engineering, College of Engineering, University of Tehran, North Kargar Avenue, Tehran, 1439957131, Iran


Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is invoked to describe the scalar field. The impact of injection strategy on temperature distribution and flame structure in a planar single-cavity TVC is investigated. A fuel jet and an air jet are injected directly into the cavity from the forebody and the afterbody, respectively.  Different injection schemes are contemplated by altering fuel and air jet locations representing the different flow and flame structures. The temperature distribution, along with cross-sectional averaged temperature and flame structure, are compared for fuel/air injection strategies. The temperature field reveals that configurations in which both air and fuel jets are located at the cavity-walls midpoint or adjacent to the cavity inferior wall, lead to a more uniform temperature distribution and lower maximum temperature with the latter configuration performing slightly better. While, the former configuration provides the closest cross-sectional averaged temperature to the adiabatic flame temperature. The reaction rate distributions show that the configurations mentioned above lead to a more contained flame, chiefly due to more efficient fuel-air mixing at lower regions of the cavity.


[1] K. Hsu, L. Gross, D.D. Trump, W.M. Roquemore, Performance of a trapped-vortex combustor, in: 33rd Aerosp. Sci. Meet. Exhib., 1995: p. 810.
[2] R.C. Hendricks, D.T. Shouse, W.M. Roquemore, D.L. Burrus, B.S. Duncan, R.C. Ryder, A. Brankovic, N.-S.N.-S. Liu, J.R. Gallagher, W.M. Roquernore, D.L. Burrus, B.S. Duncan, R.C. Ryder, A. Brankovic, N.-S.N.-S. Liu, J.R. Gallagher, J.A. Hendricks, Experimental and computational study of trapped vortex combustor sector rig with tri-pass diffuser, (2004).
[3] R.C. Hendricks, D.T. Shouse, W.M. Roquemore, D.L. Burrus, B.S. Duncan, R.C. Ryder, A. Brankovic, N.-S. Liu, J.R. Gallagher, J.A. Hendricks, Experimental and computational study of trapped vortex combustor sector rig with high-speed diffuser flow, Int. J. Rotating Mach. 7 (2001) 375–385.
[4] G. Sturgess, K.-Y. Hsu, Entrainment of mainstream flow in a trapped-vortex combustor, in: 35th Aerosp. Sci. Meet. Exhib., 1997: p. 261. doi:10.2514/6.1997-261.
[5] K.-Y. Hsu, L.P. Goss, W.M. Roquemore, Characteristics of a trapped-vortex combustor, J. Propuls. Power. 14 (1998) 57–65.
[6] Z. Rongchun, F. Weijun, Flow field measurements in the cavity of a trapped vortex combustor using PIV, J. Therm. Sci. 21 (2012) 359–367. doi:10.1007/s11630-012-0556-z.
[7] Z. Wu, Y. Jin, X. He, C. Xue, L. Hong, Experimental and numerical studies on a trapped vortex combustor with different struts width, Appl. Therm. Eng. 91 (2015) 91–104. doi:10.1016/j.applthermaleng.2015.06.068.
[8] S. Krishna, R. V. Ravikrishna, Optical diagnostics of fuel-air mixing and vortex formation in a cavity combustor, Exp. Therm. Fluid Sci. 61 (2015) 163–176. doi:10.1016/j.expthermflusci.2014.10.012.
[9] D.L. Blunck, D.T. Shouse, C. Neuroth, A. Lynch, T.J. Erdmann, D.L. Burrus, J. Zelina, D. Richardson, A. Caswell, Experimental Studies of Cavity and Core Flow Interactions With Application to Ultra-Compact Combustors, J. Eng. Gas Turbines Power. 136 (2014) 091505. doi:10.1115/1.4026975.
[10] D.L. Straub, K.H. Casleton, R.E. Lewis, T.G. Sidwell, D.J. Maloney, G.A. Richards, Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines, J. Eng. Gas Turbines Power. 127 (2005) 36. doi:10.1115/1.1789152.
[11] P.K. Ezhil Kumar, D.P. Mishra, Combustion Characteristics of a Two-Dimensional Twin Cavity Trapped Vortex Combustor, J. Eng. Gas Turbines Power. 139 (2017) 71504–71510.
[12] V. Katta, W.M. Roquemore, Numerical studies of trapped-vortex combustor, in: 32nd Jt. Propuls. Conf. Exhib., 1996: p. 2660.
[13] D.P. Mishra, R. Sudharshan, Numerical analysis of fuel-air mixing in a two-dimensional trapped vortex combustor, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 224 (2010) 65–75. doi:10.1243/09544100JAERO535.
[14] C. Stone, S. Menon, Simulation of fuel-air mixing and combustion in a trapped-vortex combustor, in: 38th Aerosp. Sci. Meet. Exhib., 2000: p. 478.
[15] Z. Zeng, J. Ren, X. Liu, Z. Xu, The unsteady turbulence flow of cold and combustion case in different trapped vortex combustor, Appl. Therm. Eng. 90 (2015) 722–732. doi:10.1016/j.applthermaleng.2015.07.041.
[16] S. Chen, R.S.M. Chue, J. Schlüter, T.T.Q. Nguyen, S.C.M. Yu, Numerical Investigation of a Trapped Vortex Miniature Ramjet Combustor, J. Propuls. Power. 31 (2015) 872–882. doi:10.2514/1.B35602.
[17] S. Krishna, R. V. Ravikrishna, Numerical and Experimental Studies on a Syngas-Fired Ultra Low NO x Combustor, J. Eng. Gas Turbines Power. 139 (2017) 111502. doi:10.1115/1.4036945.
[18] Y. Jin, X. He, J. Zhang, B. Jiang, Z. Wu, Numerical investigation on flow structures of a laboratory-scale trapped vortex combustor, Appl. Therm. Eng. 66 (2014) 318–327. doi:10.1016/j.applthermaleng.2014.02.030.
[19] P.K. Ezhil Kumar, D.P. Mishra, Numerical study of reacting flow characteristics of a 2D twin cavity trapped vortex combustor, Combust. Theory Model. 21 (2017) 658–676. doi:10.1080/13647830.2017.1281441.
[20] M. Li, X. He, Y. Zhao, Y. Jin, Z. Ge, W. Huang, Effect of strut length on combustion performance of a trapped vortex combustor, Aerosp. Sci. Technol. 76 (2018) 204–216. doi:10.1016/j.ast.2018.02.019.
[21] K.M. Zbeeb, T.T. Dimensional, T.T. Dimensional, C. Molecule, C. Monoxide, C. Dioxide, C.F. Dynamics, Fuel Injector Reynolds Number Effects on Performance and Emissions of a Trapped Vortex Combustor, in: 23rd AIAA Comput. Fluid Dyn. Conf., 2017: p. 3794. doi:10.2514/6.2017-3794.
[22] Y.-Y. Liu, R.-M. Li, H.-X. Liu, M.-L. Yang, Effects of Fueling Scheme on the Performance of a Trapped Vortex Combustor Rig, in: 45th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., 2009: p. 4831.
[23] D. Zhao, E. Gutmark, P. de Goey, A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors, Prog. Energy Combust. Sci. 66 (2018) 42–82. doi:10.1016/j.pecs.2017.12.001.
[24] S.L. Yilmaz, N. Ansari, P.H. Pisciuneri, M.B. Nik, C.C. Otis, P. Givi, Applied Filtered Density Function., J. Appl. Fluid Mech. 6 (2013).
[25] A. Afshari, F.A. Jaberi, T.I.P. Shih, Large-eddy simulations of turbulent flows in an axisymmetric dump combustor, AIAA J. 46 (2008) 1576–1592.
[26] A. Afshari, F.A. Jaberi, Large-scale simulations of turbulent combustion and propulsion systems, Combust. Process. Propuls. Control. Noise, Pulse Detonation. (2006) 31.
[27] M. Esmaeili, A. Afshari, F.A. Jaberi, Large-eddy simulation of turbulent mixing of a jet in crossflow, J. Eng. Gas Turbines Power. 137 (2015) 91510.
[28] M. Esmaeili, A. Afshari, F.A. Jaberi, Turbulent mixing in non-isothermal jet in crossflow, Int. J. Heat Mass Transf. 89 (2015) 1239–1257.
[29] P. Givi, Filtered density function for subgrid scale modeling of turbulent combustion, AIAA J. 44 (2006) 16–23.
[30] F.A. Jaberi, P.J. Colucci, S. James, P. Givi, S.B. Pope, Filtered mass density function for large-eddy simulation of turbulent reacting flows, J. Fluid Mech. 401 (1999) 85–121.
[31] F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbul. Combust. 62 (1999) 183–200. doi:10.1023/A:1009995426001.
[32] W.-W. Kim, S. Menon, Les of turbulent fuel/air mixing in a swirling combustor, in: 37th Aerosp. Sci. Meet. Exhib., 1998: p. 200.
[33] S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16–42.
[34] M.R. Visbal, D. V Gaitonde, Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes, J. Comput. Acoust. 9 (2001) 1259–1286.
[35] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89–112.
[36] C.W. Gardiner, Handbook of stochastic methods volume 13 of the Springer series in synergetics, J. Opt. Soc. Am. B Opt. Phys. 1 (n.d.) 409.
[37] S. Karlin, H.E. Taylor, A second course in stochastic processes, Elsevier, 1981.
[38] P.E. Kloeden, E. Platen, H. Schurz, Stochastic differential equations, in: Numer. Solut. SDE Through Comput. Exp., Springer, 1994: pp. 63–90.
[39] J. Kim, A. Afshari, D. Bodony, J. Freund, LES investigation of a Mach 1.3 jet with and without plasma actuators, in: 47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., 2009: p. 290.
[40] A. Banaeizadeh, A. Afshari, H. Schock, F. Jaberi, Large eddy simulations of turbulent flows in IC engines, in: ASME 2008 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., American Society of Mechanical Engineers, 2008: pp. 399–407.
[41] M.R.H. Sheikhi, T.G. Drozda, P. Givi, F.A. Jaberi, S.B. Pope, Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D), Proc. Combust. Inst. 30 (2005) 549–556.
[42] K.K. Agarwal, R. V. Ravikrishna, Experimental and numerical studies in a compact trapped vortex combustor: Stability assessment and augmentation, Combust. Sci. Technol. 183 (2011) 1308–1327. doi:10.1080/00102202.2011.592516.
[43] K.K. Agarwal, R. V. Ravikrishna, Flow-acoustic Characterisation of a Cavity-based Combustor Configuration, Def. Sci. J. 61 (2011) 523–528. doi:10.14429/dsj.61.870.
[44] H. Yu, L.-S. Luo, S.S. Girimaji, Scalar mixing and chemical reaction simulations using lattice Boltzmann method, Int. J. Comput. Eng. Sci. 3 (2002) 73–87.
[45] S.B. Pope, Turbulent flows, IOP Publishing, 2001.