Electromagnetic field analysis of novel low cogging force, linear switched reluctance motor, based on 2-D finite element method


Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah 67149, Iran


This paper deals with electromagnetic design and 2-D (two-dimensional) magnetic field analysis of novel low force ripple linear switched reluctance (LSR) motor. The configuration that has been presented here has a higher number of rotor poles than stator poles, and the purpose of this configuration is to improve the force ripple, which is the weak point of LSRMs. In order to illustrate the conformity of the design parameter’s stage in this study, the calculated values of the magnetic field and cogging force characteristics are compared with that of their desired values. Also, the proposed configuration is compared to a 6-4 and 3-phase conventional LSRM with similar number of stator teethes, number of phases, and constraints in volume. From the numerical analysis of a proposed novel configuration, it has been observed that this machine produces higher force per unit volume and almost similar cogging force when compared to a conventional LSRM with identical number of stator teethes, number of phases, and constraints in volume. The obtained primary electric and magnetic characteristics for the proposed configuration are verified with the help of 2-D FE computations.


[1] Krishnan K., Switched Reluctance Motor Drives, Modeling, Simulation, Analysis, Design, and Applications, CRC Press (2001).
[2] Baoming G., Almeida A. T., Ferreira F., Design of Transverse Flux Linear Switched Reluctance Motor,   IEEE Transactions on Magnetics (2009) 45(1): 113–119.
[3] Ma C., Qu L., Multiobjective Optimization   of   Switched   Reluctance Motors Based on Design of  Experiments and Particle Swarm Optimization,  IEEE Transactions on Energy Conversion,  DOI: 10.1109/TEC.2015.2411677 (2015) (99):1-10.
[4] Jin Y. , Bilgin B.,  Emadi A., An Offline Torque Sharing Function for Torque Ripple Reduction in Switched Reluctance Motor Drives, IEEE Transactions on Energy Conversion (2015) 30(2): 726-735.
[5] Boldea I., Linear Electric Machines, Drives  and MAGLEVs Handbook, CRC Press (2013).
[6] Amoros J. G., Andrada P., Sensitivity Analysis of Geometrical Parameters on a Double-Sided Linear Switched Reluctance Motor, IEEE Transactions on Industrial Electronics (2010) 57(1).
[7] Lim H. S., Krishnan R., Lobo N. S., Design and Control of a Linear Propulsion System for an Elevator Using Linear Switched Reluctance Motor Drives, IEEE Transactions on Industrial Electronics (2008)55(2): 534–542.
[8] Liu C.T., Su K.S., Chen J.W., Operational Stability Enhancement Analysis of a Transverse Flux Linear Switched-Reluctance Motor, in IEEE Transactions on Magnetics (2000) 36(5): 3699 – 3702.
[9] Yanni L., Aliprantis D.C., Optimum Stator Tooth Shapes for Torque Ripple Reduction in Switched Reluctance Motors, IEEE International Electric Machines & Drives Conference (IEMDC), DOI: 10.1109/IEMDC.2013.6556224 (2013) 1037 – 1044.
[10] Sheth N. K., Rajagopal K. R., Optimum Pole Arcs for a Switched Reluctance Motor for Higher Torque with Reduced Ripple, IEEE Transactions on Magnetics (2003) 39(5): 3214–3216.
[11] Lee J.W., Kim H.S., Kwon B., Kim B.T., New Rotor Shape Design for Minimum Torque Ripple of SRM Using FEM, IEEE Transactions Magnetics (2004) 40 (2): 754 - 757,.
[12] Mikail R., Husain I., Sozer Y., Islam M., Sebastian T.,Torque-Ripple Minimization of Switched Reluctance Machines Through Current Profiling,  IEEE Transactions on Industry Applications (2013) 49 (3):1258 -1267.
[13] Husain I., Minimization of Torque Ripple in SRM Drive, IEEE Transactions on Industrial Electronics (2002) 49(1):28 -39.
[14] Lee D. H., Lee Z. G., Ahn  J. W., A Simple Nonlinear Logical Torque Sharing Function for Low-Torque Ripple SR Drive,  IEEE Transactions on Industrial Electronics (2009) 56(8): 3021 -3028.
[15] Kiwoo P., Liu X., Chen  Z., A Non-Unity Torque Sharing Function for Torque Ripple Minimization of Switched Reluctance Generators,  The European Conference on Power Electronics and Applications (2013) 1 -10.
[16] Choi Y.K, Koh C. S, Pole Shape Optimization of Switched Reluctance Motor for Reduction of Torque Ripple, 12th Biennial IEEE Conference on Electromagnetic Field Computation, DOI: 10.1109/CEFC-06.2006.1633125 (2006).
[17] Choi Y.K., Yoon H. S., Koh C. S., Pole-Shape Optimization of a Switched-Reluctance Motor for Torque Ripple Reduction, IEEE Transactions on Magnetics (2007) 43(4).
[18] Wang H., Lee D.H., Park T.H., Ahn J.W., Hybrid Stator-Pole Switched Reluctance Motor to Improve Radial Force for Bearing Less Application, Energy Convers Manage (2011)52:1371–6.
[19] Faghihi F., Heydari H., Reduction of Leakage Magnetic Field in Electromagnetic Systems Based on Active Shielding Concept Verified by Eigenvalue Analysis, Progress In Electromagnetics Research (2009) 96: 217-236.
[20] Rezaeealam J.B., Yamada S., Coupled Finite-Element/Boundary-Element Analysis Of A Reciprocating Self-Excited Induction Generator In A Harmonic Domain, IEEE Transactions On Magnetics (2005) 41(11).
[21] Tian J., Lv Z. Q., Shi X. W., Xu L., Wei F., An Efficient Approach for Multifrontal Algorithm to Solve Non-Positive-Definite Finite Element Equations In Electromagnetic Problems”, Progress In Electromagnetics Research (2009) 95121-133.
[22] Norhisam M., Ridzuan S., Firdaus R. N., Aravind C. V., Wakiwaka H., Nirei M., Comparative Evaluation On Power-Speed Density Of Portable Permanent Magnet Generators For Agricultural Application, Progress In Electromagnetics Research (2012) 129:345-363.
[23] Jian L., Xu G., Gong Y., Song J., Liang J., Chang M., Electromagnetic Design And Analysis Of A Novel Magnetic-Gear-Integrated   Wind  Power  Generator Using Time-Stepping Finite Element Method, Progress In Electromagnetics Research(2011.)113:351-367.
[24] Mahmoudi A., Kahourzade S., Rahim N. A., Hew W. P., Ershad N. F., Slot-Less Torus Solid-Rotor-Ringed Line-Start Axial-Flux Permanent-Magnet Motor, Progress In Electromagnetics Research (2012) 131:331-355.
[25] Liang J., Jian L., Xu G., Shao Z., Analysis Of Electromagnetic Behavior in Switched Reluctance Motor for The Application Of Integrated Air Conditioner On-Board Charger System, Progress in Electromagnetics Research, (2012) 124:347-364.
[26] Dan-Cristian Popa, Vasile-Ioan Gliga, and Lorand Szabo, Theoretical and Experimental Study of a Modular Tubular Transverse Flux Reluc-Tance Machine, Progress in Electromagnetics Research (2013) 139:41-55.
[27] Cheshmehbeigi H. M., Afjei S. E., Nasiri B., Electromagnetic Design Based on Hybrid Analytical and 3-D Finite Element Method for Novel Two Layers Bldc Machine, Progress In Electromagnetics Research,DOI:10.2528/PIER12111301 (2013) 136: 141-155.
[28] Liu C., Chau K. T., Electromagnetic Design and Analysis of Double-Rotor Flux-Modulated Permanent-Magnet Machines, Progress in Electromagnetics Research (2012) 131:81-97.
[29] Li X., Chau K.T., Cheng M., Hua W., Comparison of Magnetic-Geared Permanent-Magnet Machines, Progress in Electromagnetics Research (2013) 133: 177-198.
[30] Jian L., Liang J., Shi Y., Xu G., A Novel Double-Winding Permanent Magnet Flux Modulated Machine for Stand-Alone Wind Power Generation, Progress In Electromagnetics Research (2013) 142: 275-289.
[31] Yan L., Zhang L., Wang T., Jiao Z., Chen C. Y., Chen I-M., Magnetic Field of Tubular Linear Machines with Dual Halbach Array, Progress in Electromagnetics Research (2013) 136: 283-299,.
[32] Kahourzade S., Gandomkar A., Mahmoudi A., Abd Rahim N., Hew W. P., Uddin M.N., Design Optimization and Analysis of AFPM Synchronous Machine in Corporating Density, Thermal analysis NDBACK-EMFTHD       Progress in Electromagnetics Research (2013) 136: 327-367.
[33] Andreux R., Fontchastagner J., Takorabet N., Labbe N., Metral J.S., A General Approach for Brushed DC Machines Simulation Using a Dedicated Field/Circuit Coupled Method, Progress in Electromagnetics Research (2014) 145, 213-227.
[34] Musolino A., Rizzo R., Tripodi E., Tubular Linear  Induction Machine as a Fast Actuator, Analysis and Design Criteria, Progress in Electromagnetics Research (2012) 132:603-619.
[35] Khalil A., Modeling and Analysis of Four Quadrant Sensorless Control of a Switched Reluctance Machine over the Entire Speed Range, Dissertation, University of Akron (2005).
[36] Rahman M., Chancharoensook P., Dynamic Modeling of a Four-Phase 8/6 Reluctance Motor Using Current and Torque Look-up Tables, IECON 02 (Industrial Electronics Society) 28th Annual Conference, IEEE 2002 .
[37] Ren Z., T-Ω Formulation for Eddy-Current Problems in Multiply Connected Regions, IEEE Transactions on Magnetics (2002) 38(2).
[38] Webb J. P., Singular Tetrahedral Finite Elements of High Order for Scalar Magnetic and Electric Field Problems, IEEE Transactions on Magnetics (2008) 44 (6).