Possibility of supplying energy to border villages by solar energy sources

Document Type : Research Paper


1 Department of Biosystems Engineering, Tarbiat Modares University (TMU), Tehran, Iran

2 Department of Management and Accounting, Allameh Tabataba'I University,Tehran, Iran

3 Department of Management and Economics, Science and Research Branch of the Islamic Azad University (SRBIAU), Tehran, Iran


Solar Energy is considered the cleanest and the most accessible energy source in the world. Its application is also one of the best electrification and energy transmission methods than other energy transmission models for outlying villages in terms of costs, transportation, maintenance, and similar factors. Accordingly, one of the critical studies on the context of exploitation of this energy is the possibility of establishing and identifying susceptive areas. In this study, the amount of solar energy entering the earth's surface and the number of cloudiness days were studied based on the studied area's meteorological data. Also, we designed and simulated solar photovoltaic power plants through the Meteorological Data on Virtual model. The solar analyzer function in the ArcGIS commercial closed environment was used to estimate the entering radiation to the earth's surface in the studied area. To study the number of cloudiness days has been used from the mentioned area's weather station data. The results showed that the solar analyzer function showed four months of the year available for full exploitation of these systems. The highest amount of radiation occurred after July. Optimal radiation conditions continue until November. In some days of the remaining months, this energy has been confronted with limitations. Nine villages were identified with the highest solar power utilization in the present study. Villages include the following: Kuran, Hurseen, Bavan, Barduk, Betic, Mareush, Jolfan, Sin Abad and Gudel.


[1] Y. Yu, Z. Xin Jin, J. Zu Li, L. Jia, Low-carbon development path research on China’s power industry based on synergistic emission reduction between CO2 and air pollutants, J. Clean. Prod. 275 (2020) 123097. doi:10.1016/j.jclepro.2020.123097.
[2] F. Ghasemzadeh, M. Esmaeilzadeh, M. Esmaeili Shayan, Photovoltaic Temperature Challenges and Bismuthene Monolayer Properties, Int. J. Smart Grid. 4 (2020) 190–195. https://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/131/pdf.
[3] J. Polo, C. Fernández-Peruchena, V. Salamalikis, L. Mazorra-Aguiar, M. Turpin, L. Martín-Pomares, A. Kazantzidis, P. Blanc, J. Remund, Benchmarking on improvement and site-adaptation techniques for modeled solar radiation datasets, Sol. Energy. 201 (2020) 469–479. doi:10.1016/j.solener.2020.03.040.
[4] M. Esmaeili Shayan, Solar Energy and Its Purpose in Net-Zero Energy Building,  A. Pérez-Fargallo, I. Oropeza-Perez (Eds.), Zero-Energy Build. New Approaches Technol., IntechOpen, 2020. doi:10.5772/intechopen.93500.
[5] M. Azadbakht, E. Esmaeilzadeh, M. Esmaeili-Shayan, Energy consumption during impact cutting of canola stalk as a function of moisture content and cutting height, J. Saudi Soc. Agric. Sci. 14 (2015) 147–152. doi:10.1016/j.jssas.2013.10.002.
[6] G. Franzese, V. Della Rocca, F. Esposito, Resolution of the size/distance degeneracy of the dust devils signals observed with a stationary meteorological station, Aeolian Res. 44 (2020) 100594. doi:10.1016/j.aeolia.2020.100594.
[7] M.S. Esmaeili, G. Najafi, Energy-Economic Optimization of Thin Layer Photovoltaic on Domes and Cylindrical Towers, Int. J. Smart Grid - IjSmartGrid. 3 (2019) 84–91. https://www.ijsmartgrid.ijrer.org/index.php/ijsmartgridnew/article/view/61 (accessed July 8, 2019).
[8] M. Esmaeili Shayan, F. Ghasemzadeh, Nuclear Power Plant or Solar Power Plant,  N. Awwad (Ed.), Nucl. Power Plants - Process. from Cradle to the Grave, IntechOpen,  Landon, 2020. doi:10.5772/intechopen.92547.
[9] M. Esmaeili-Shayan, H. Shamsabadi, H. Azadi, Design and construction of a dynamic site to receive electricity from the river’s flow studied by fishery and utilization workshops,  Fourth Clean Energy Annu. Conf., Graduate School of Industrial and Advanced Technology, 2014.
[10] M. Esmaeili Shayan, Solar Energy and Nuclear Power. Economic Requirements and Hindrances, GRIN Verlag, 2020. https://books.google.com/books?id=KkL8DwAAQBAJ.
[11] B. Koçak, A.I. Fernandez, H. Paksoy, Review on sensible thermal energy storage for industrial solar applications and sustainability aspects, Sol. Energy. 209 (2020) 135–169. doi:10.1016/j.solener.2020.08.081.
[12] I. Boie, C. Kost, S. Bohn, M. Agsten, P. Bretschneider, O. Snigovyi, M. Pudlik, M. Ragwitz, T. Schlegl, D. Westermann, Opportunities and challenges of high renewable energy deployment and electricity exchange for North Africa and Europe - Scenarios for power sector and transmission infrastructure in 2030 and 2050, Renew. Energy. 87 (2016) 130–144. doi:10.1016/j.renene.2015.10.008.
[13] A. Azad, E. Aghaei, A. Jalali, P. Ahmadi, Multi-objective optimization of a solar chimney for power generation and water desalination using neural network, Energy Convers. Manag. 238 (2021) 114152. doi:10.1016/j.enconman.2021.114152.
[14] A. Behzadi, A. Habibollahzade, P. Ahmadi, E. Gholamian, E. Houshfar, Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production, Energy. 169 (2019) 696–709. doi:10.1016/j.energy.2018.12.047.
[15] A.R. Gupta, V.K. Rathod, Solar radiation as a renewable energy source for the biodiesel production by esterification of palm fatty acid distillate, Energy. 182 (2019) 795–801. doi:10.1016/j.energy.2019.05.189.
[16] I. V. Provornaya, I. V. Filimonova, L. V. Eder, V.Y. Nemov, E.A. Zemnukhova, Formation of energy policy in Europe, taking into account trends in the global market, in: Energy Reports, Elsevier Ltd, 2020: pp. 599–603. doi:10.1016/j.egyr.2019.09.032.
[17] A. Andreou, J. Barrett, P.G. Taylor, P.E. Brockway, Z. Wadud, Decomposing the drivers of residential space cooling energy consumption in EU-28 countries using a panel data approach, Energy Built Environ. 1 (2020) 432–442. doi:10.1016/j.enbenv.2020.03.005.
[18] L. Joshi, D. Choudhary, P. Kumar, J. Venkateswaran, C.S. Solanki, Does involvement of local community ensure sustained energy access? A critical review of a solar PV technology intervention in rural India, World Dev. 122 (2019) 272–281. doi:10.1016/j.worlddev.2019.05.028.
[19] M. Esmaeili Shayan, G. Najafi, A. Ahmad Banakar, Power Quality in Flexible Photovoltaic System on Curved Surfaces, J. Energy Plan. Policy Res. 3 (2017) 105–136. http://epprjournal.ir/browse.php?a_id=230&sid=1&slc_lang=en (accessed February 10, 2019).
[20] D. Guijo-Rubio, A.M. Gómez-Orellana, P.A. Gutiérrez, C. Hervás-Martínez, Short- and long-term energy flux prediction using Multi-Task Evolutionary Artificial Neural Networks, Ocean Eng. (2020) 108089. doi:10.1016/j.oceaneng.2020.108089.
[21] Q. Cao, Y. Liu, K. Lyu, Y. Yu, D.H.W. Li, L. Yang, Solar radiation zoning and daily global radiation models for regions with only surface meteorological measurements in China, Energy Convers. Manag. 225 (2020) 113447. doi:10.1016/j.enconman.2020.113447.
[22] A. Habibollahzade, Employing photovoltaic/thermal panels as a solar chimney roof: 3E analyses and multi-objective optimization, Energy. 166 (2019) 118–130. doi:10.1016/j.energy.2018.10.048.
[23] M. Esameili Shayan, G. Najafi, S. Esameili Shayan, Design of an Integrated Photovoltaic Site: Case of Isfahan’s Jarghouyeh photovoltaic plant, J. Energy Plan. Policy Res. 6 (2021) 229–250. http://epprjournal.ir/article-1-858-en.html (accessed March 6, 2021).
[24] M. Norouzi, M. Yeganeh, T. Yusaf, Landscape framework for the exploitation of renewable energy resources and potentials in urban scale (case study: Iran), Renew. Energy. 163 (2021) 300–319. doi:10.1016/j.renene.2020.08.051.
[25] H.K. Firozjaei, M.K. Firozjaei, O. Nematollahi, M. Kiavarz, S.K. Alavipanah, On the effect of geographical, topographic and climatic conditions on feed-in tariff optimization for solar photovoltaic electricity generation: A case study in Iran, Renew. Energy. 153 (2020) 430–439. doi:10.1016/j.renene.2020.01.127.
[26] E.T. Asr, R. Kakaie, M. Ataei, M.R. Tavakoli Mohammadi, A review of studies on sustainable development in mining life cycle, J. Clean. Prod. 229 (2019) 213–231. doi:10.1016/j.jclepro.2019.05.029.
[27] M. Rezaei, A. Mostafaeipour, M. Qolipour, R. Tavakkoli-Moghaddam, Investigation of the optimal location design of a hybrid wind-solar plant: A case study, Int. J. Hydrogen Energy. 43 (2018) 100–114. doi:10.1016/j.ijhydene.2017.10.147.
[28] O.M. Roche, R.E. Blanchard, Design of a solar energy center for providing lighting and income-generating activities for off-grid rural communities in Kenya, Renew. Energy. 118 (2018) 685–694. doi:10.1016/j.renene.2017.11.053.
[29] Z. Alijani, F. Hosseinali, A. Biswas, Spatio-temporal evolution of agricultural land use change drivers: A case study from Chalous region, Iran, J. Environ. Manage. 262 (2020) 110326. doi:10.1016/j.jenvman.2020.110326.
[30] F. Shahbazi, A.A. Jafarzadeh, Integrated assessment of rural lands for sustainable development using MicroLEIS DSS in West Azerbaijan, Iran, Geoderma. 157 (2010) 175–184. doi:10.1016/j.geoderma.2010.04.010.
[31] M.K. Firozjaei, O. Nematollahi, N. Mijani, S.N. Shorabeh, H.K. Firozjaei, A. Toomanian, An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning, Renew. Energy. 136 (2019) 1130–1146. doi:10.1016/j.renene.2018.09.090.
[32] J. Li, Z. Zhang, B. Shen, Z. Gao, D. Ma, P. Yue, J. Pan, The capacity allocation method of photovoltaic and energy storage hybrid system considering the whole life cycle, J. Clean. Prod. 275 (2020) 122902. doi:10.1016/j.jclepro.2020.122902.
[33] F. Ghasemzadeh, M. Esmaeili Shayan, Nanotechnology in the Service of Solar Energy Systems, Nanotechnol. Environ., IntechOpen, London, 2020. doi:10.5772/intechopen.93014.
[34] S. Girija, A. Joshi, Fast Hybrid PSO-APF Algorithm for Path Planning in Obstacle Rich Environment, IFAC-PapersOnLine, Elsevier B.V., 2019: pp. 25–30. doi:10.1016/j.ifacol.2019.12.616.
[35] P. Bartie, W. Mackaness, O. Lemon, T. Dalmas, S. Janarthanam, R.L. Hill, A. Dickinson, X. Liu, A dialogue based mobile virtual assistant for tourists: The SpaceBook Project, Comput. Environ. Urban Syst. 67 (2018) 110–123. doi:10.1016/j.compenvurbsys.2017.09.010.
[36] K. Matsuo, T. Tanaka, Analysis of spatial and temporal distribution patterns of temperatures in urban and rural areas: Making urban environmental climate maps for supporting urban environmental planning and management in Hiroshima, Sustain. Cities Soc. 47 (2019) 101419. doi:10.1016/j.scs.2019.01.004.
[37] Noname, SCI, (2020). https://www.amar.org.ir/english (accessed September 27, 2020).