Investigation of a single-reheat condensing steam power plant based on energy and exergy analysis

Document Type: Research Paper


Center of Excellence in Design and Optimization of Energy Systems, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran, P. O. Box: 11155-4563


Nowadays, energy plays an important role in the economic and community development of country. Consequently, performance analysis of energy systems is one of the effective methods being used to prevent waste of energy resources. Among the different power generation technologies, steam power plants make a significant contribution to power generation in Iran, with a share of 47 % of electricity generation. Therefore, it seems that exergy analysis of the power plant can help designers to reduce energy losses and increase efficiency. In this study, energy and exergy analysis of a single-reheat steam power plant in Iran is presented. This analysis considered the effect of environment temperature variation on the energy and exergy efficiencies. The results showed that the condenser has most energy losses (50%) in a cycle, while maximum exergy destruction (84%) occurs in the boiler. The thermal and exergy efficiencies at reference temperature were computed as 36.84% and 34.75%, respectively. Exergy destruction and efficiency of each component have been considered and are reported in the paper. The effects of various parameters such as steam pressure, steam temperature and condenser pressure have also been examined in the cycle performance.