The food-energy-water nexus: A framework for sustainable development modeling

Document Type: Research Paper

Authors

1 Applied Energy Research Laboratory (AERL), Department of Mechanical Engineering, College of Engineering, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844-0902, USA

2 Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe St. N., Oshawa, ON, L1G 0C5, Canada

Abstract

Energy, water, and food are facing present and future challenges triggered by climate change, population growth, human behavior, and economics. Management strategies for energy, water, and food are possible through policies, technology, and related education. However, the links between resources (energy, water, and food) and impacting factors (population increase, human behavior, economics, and global warming) need to be developed. Holistic modeling is needed to supply and demand energy, water, and food. That type of modeling explores the energy-water-food nexus. The framework for such modeling is described in this study, and previous frameworks are reviewed. Recommendations for addressing energy, water, and food challenges, before and after completing the energy-water-food nexus modeling, involve the following: modifying processes, modifying products, innovative processes, and innovative products. With an energy water-food-nexus model, the impact of any changes on resources can be measured and quantified.

Keywords


[1] A. H. Maslow, "Maslow's Hierarchy of Needs : Research History," Psychological Review, 50, 370-396, 1943. Available: http://www.researchhistory.org/2012/06/ 16/maslows-hierarchy-of-needs/. [Accessed: 27-Jan-2019].

[2] U.N. projects world population to reach 8.5 billion by 2030, driven by growth in developing countries, United Nations News, 29 July 2015.

[3] U. E. I. Administration, "EIA projects world energy consumption will increase by 56% by 2040," U.S. Energy Information Administration, 25 July 2013. Available: http://www.eia.gov/todayinenergy/detail.cfm?id=12251#. [Accessed: 1-July-2010].

[4] J.-D. Rinaudo, "Long-Term Water Demand Forecasting," Chapter 11 in Understanding and Managing Urban Water in Transition, Springer Netherlands, 2015, pp. 239–268.

[5] Parry, M.L., Canzani, O.P., Palutikof, J.P. et al., eds., Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 2007.

[6] P. Romero-Lankao, T. McPhearson, and D. J. Davidson, "The food-energy-water nexus and urban complexity," Nature Climate Change, 7, 233-235, 2017.

[7] A. Endo, I. Tsurita, K. Burnett, and P. M. Orencio, "A review of the current state of research on the water, energy, and food nexus," J. Hydrol. Reg. Stud., 11, 20-30, 2017, doi: 10.1016/j.ejrh.2015.11.010.

[8] World Economic Forum, An initiative of the Risk Response Network “Global Risk 2011” Sixth Edition, Geneva, January 2011.

[9] The World Economic Forum Water Initiative, "Water Security: The water-Food-Energy-Climate Nexus," Washington, 2011. http://www3.weforum.org/docs/WEF_WI_WaterSecurity_WaterFoodEnergyClimateNexus_2011.pdf [accessed: Sep 14, 2019]

[10] N. Weitz, M. Nilsson, and M. Davis, "A Nexus Approach to the Post- 2015 Agenda: Formulating Integrated Water, Energy, and Food SDGs," SAIS Rev., vol. XXXIV, no. 2, pp. 37–50, 2014.

[11] S. Shannak, D. Mabrey, and M. Vittorio, "Moving from theory to practice in the water–energy–food nexus: An evaluation of existing models and frameworks," Water-Energy Nexus, vol. 1, no. 1, pp. 17–25, Jun. 2018, doi: 10.1016/j.wen.2018.04.001.

[12] M. Al-Saidi, N. A. Elagib, and D. Barcelo, "Towards understanding the integrative approach of the water, energy and food nexus," Sci. Total Environ., vol. 574, pp. 1131–1139, 2017, doi: 10.1016/j.scitotenv.2016.09.046.

[13] H. Hoof, "Understanding the nexus. Background paper for the Bonn2011 Conference: the water, energy and food security nexus," in Stockholm Environment Institute, 2011.

[14] M. Giampietro, R. J Aspinall; S.G.F. Bukkens; J. Cadillo Benalcazar;F.  Díaz maurín; A. Flammini; T. Gomiero; Z. Kovacic; C. Madrid; J. Ramos Martín; T. Serrano Tovar “An innovative accounting framework for the food-energy - water nexus: Application of the MuSIASEM approach to three case studies” Roma, Italy, 2013.

[15] M. Howells,  S. Hermann, M. Welsch, M. Bazilian, R. Segerström, T. Alfstad, D. Gielen, H. Rogner, G. Fischer, H. Velthuizen, D. Wiberg, C. Young, R. A. Roehrl, A. Mueller, P. Steduto & I Ramma “Integrated analysis of climate change, land-use, energy and water strategies,” Nat. Clim. Chang, vol. 3, no. 7, pp. 621–626, Jun. 2013, doi: 10.1038/nclimate1789.

[16] FAO, "The Water-Energy-Food Nexus A new approach in support of food security and sustainable agriculture," Roma, 2014.

[17] E. M. Biggs, E. Bruce, B. Boruff, JMA. Duncan, J. Horsley, N. Pauli, K. McNeill, A. Neef, F.V. Ogtrop, J. Curnow, B. Haworth, S. Duce, Y. Imanari, "Sustainable development and the water–energy–food nexus: A perspective on livelihoods," Environ. Sci. Policy, vol. 54, pp. 389–397, 2015, doi: 10.1016/j.envsci.2015.08.002.

[18] D. Conway, E.A. van Garderen, D. Deryng, S. Dorling, T. Krueger, W. Landman, B. Lankford, K. Lebek, T. Osborn, C. Ringler, J. Thurlow, T. Zhu, C. Dalin, "Climate and southern Africa's water-energy-food nexus, Nat Clim Change, 5 (2015), pp. 837-846, doi: 10.1038/NCLIMATE2735.

[19] E. Mohareb et al., "Environmental Research Letters LETTER, OPEN ACCESS Related content Considerations for reducing food system energy demand while scaling up urban agriculture Tracking urban carbon footprints from production and consumption perspectives," Environ. Res. Lett., 2017, doi: 10.1088/1748-9326/aa5556.

[20] S. Bunyavanich, C. P. Landrigan, A. J. McMichael, and P. R. Epstein, "The Impact of Climate Change on Child Health," Ambul. Pediatr., vol. 3, no. 1, 2003.

[21] B.C. O’Neill, E. Kriegler, K. Riahi, K.L. Ebi, S. Hallegatte, T.R. Carter, R. Mathur, D.P. van Vuuren, “A new scenario framework for climate change research: the concept of shared socioeconomic pathways,” Clim. Change, vol. 122, no. 3, pp. 387–400, Feb. 2014, doi: 10.1007/s10584-013-0905-2.

[22] W. E. Allan Tony, Keulertz Martin, "The water–food–energy nexus: an introduction to nexus concepts and some conceptual and operational problems," Int. J. Water Resour. Dev., vol. 31, no. 3, pp. 301–311, 2015, doi: 10.1080/07900627.2015.1029118.

[23] C. Ringler, A. Bhaduri, and R. Lawford, "The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency," Curr. Opin. Environ. Sustain., vol. 5, pp. 617–624, 2013, doi: 10.1016/j.cosust.2013.11.002.

[24] U. Lele, M. Klousia-Marquis, and S. Goswami, "Good Governance for Food, Water and Energy Security," Aquat. Procedia, vol. 1, pp. 44–63, 2013, doi: 10.1016/j.aqpro.2013.07.005.

[25] C. A. Scott, S. A. Pierce, M. J. Pasqualetti, A. L. Jones, B. E. Montz, and J. H. Hoover, "Policy and institutional dimensions of the water–energy nexus," Energy Policy, vol. 39, pp. 6622–6630, 2011, doi: 10.1016/j.enpol.2011.08.013.

[26] D. Perrone, J. Murphy, and G. M. Hornberger, "Gaining Perspective on the WaterÀEnergy Nexus at the Community Scale," Environ. Sci. Technol, vol. 45, pp. 4228–4234, 2011, doi: 10.1021/es103230n.

[27] D. J. Garcia and F. You, "The water-energy-food nexus and process systems engineering: A new focus-food nexus Modeling and optimization of multiple spatial and temporal scales Life cycle optimization Multi-scale modeling Modeling of multiple stakeholders," Comput. Chem. Eng., vol. 91, pp. 49–67, 2016, doi: 10.1016/j.compchemeng.2016.03.003.

[28] C. Howarth and I. Monasterolo, "Understanding barriers to decision making in the U.K. energy-food -water nexus: The added value of interdisciplinary approaches," Environ. Sci. Policy, vol. 61, pp. 53–60, 2016, doi: 10.1016/j.envsci.2016.03.014.

[29] Kaufui Vincent Wong, "Energy–Water–Food Nexus and Recommendations for Security," J. Energy Resour. Technol., vol. 137, no. May, pp. 034701-1-034701–4, 2015.

[30] G. Krajačić, N. Duić, M. Vujanović, Ş. Kılkış, M. A. Rosen, and M. A. Al-Nimr, "Sustainable development of energy, water and environment systems for future energy technologies and concepts," Energy Conversion and Management. 2016, doi: 10.1016/j.enconman.2016.08.050.

[31] K. Singh, Baljinder; Kaur, Jagdeep; Singh, "Production of Biodiesel from Used Mustard Oil and Its Performance Analysis in Internal Combustion Engine," ASME, J. Energy Resour. Technol., no. September, pp. 031001-1-031001–4, 2010.

[32] M. Bazilian H. Rogner, M. Howells, S. Hermann, D. Arent, D. Gielen, P. Steduto, A. Mueller, P. Komor, S. Tol, K. Yumkella, "Considering the energy, water and food nexus: Towards an integrated modeling approach," Energy Policy, vol. 39, pp. 7896–7906, 2011, doi: 10.1016/j.enpol.2011.09.039.

[33] D. S. B.K. Sovacool, S.E. Ryan, P.C. Stern, K. Janda, G. Rochline and L. L. M.J. Pasqualetti, H. Wilhite, "Integrating social science in energy research," Energy Res. Soc. Sci., vol. 6, pp. 95–99, 2015.

[34] M. J. Pasqualetti and M. A. Brown, "Ancient discipline, modern concern: Geographers in the field of energy and society," Energy Res. Soc. Sci., vol. 1, pp. 122–133, 2014, doi: 10.1016/j.erss.2014.03.016.

[35] B. K. Sovacool, "What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda," Energy Res. Soc. Sci., vol. 1, pp. 1–29, 2014, doi: 10.1016/j.erss.2014.02.003.

[36] M. A. Hanjra and M. Ejaz Qureshi, "Global water crisis and future food security in an era of climate change," Food Policy, vol. 35, pp. 365–377, 2010, doi: 10.1016/j.foodpol.2010.05.006.

[37] A. Dubreuil, E. Assoumou, S. Bouckaert, S. Selosse, and N. Ma, "Water modeling in an energy optimization framework †"The water-scarce middle east context," Appl. Energy, vol. 101, pp. 268–279, 2013, doi: 10.1016/j.apenergy.2012.06.032.

[38] P. Grassini, J. Wolf, P. Tittonell, and Z. Hochman, "Yield gap analysis with local to global relevance—A review," F. Crop. Res., vol. 143, pp. 4–17, 2013, doi: 10.1016/j.fcr.2012.09.009.

[39] D. Vanham, F. Bouraoui, A. Leip, B. Grizzetti, and G. Bidoglio, "Lost water and nitrogen resources due to E.U. consumer food waste," Environ. Res. Lett., vol. 10, no. 8, p. 084008, Aug. 2015, doi: 10.1088/1748-9326/10/8/084008.

[40] A. Y. Hoekstra, "Water for animal products: a blind spot in water policy," Environ. Res. Lett., vol. 9, no. 9, p. 091003, Sep. 2014, doi: 10.1088/1748-9326/9/9/091003.

[41] C. J. Koop, S. H. A.; van Leeuwen, “The challenges of water, waste and climate change in cities,” Env. Dev Sustain, no. 19, pp. 385–418, 2017, doi: 10.1007/s10668-016-9760-4.

[42] D. Vanham, T. N. Mak, and B. M. Gawlik, "Urban food consumption and associated water resources: The example of Dutch cities," Sci. Total Environ., vol. 565, pp. 232–239, 2016, doi: 10.1016/j.scitotenv.2016.04.172.

[43] G. Gold and M. Webber, "The Energy-Water Nexus: An Analysis and Comparison of Various Configurations Integrating Desalination with Renewable Power," Resources, vol. 4, no. 2, pp. 227–276, Apr. 2015, doi: 10.3390/resources4020227.

[44] R. Schaeffer , A.S. Szklo, A.F.P. de Lucena, B.S.M.C. Borba, L.P.P. Nogueira, F.P. Fleming, "Energy sector vulnerability to climate change: A review," Energy, vol. 38, pp. 1–12, 2012, doi: 10.1016/j.energy.2011.11.056.

[45] Vidal. John, "China and India' water grab' dams put ecology of Himalayas in danger," Obs., 2013.

[46] A. Wong, Kaufui V.; Paddon, Andrew; Jimenez, "Review of World Urban Heat Islands: Many Linked to Increased Mortality," ASME J. Energy Resour. Technol., vol. 135, pp. 022101-1-022101–11, June 2013.

[47] K. V. Wong, "The Second Law of Thermodynamics and Heat release to the Global Environment by Human Activities," in ASME Proceedings IMECE, 2010.

[48] Tyler A. DeNooyer a, Joshua M. Peschel a, Zhenxing Zhang b, and Ashlynn S. Stillwell, "Integrating water resources and power generation: The energy-water nexus in Illinois," Appl. Energy, vol. 162, pp. 363–371, 2016.

[49] X. Li, K. Feng, Y. L. Siu, and K. Hubacek, "Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption," Energy Policy, no. 45, pp. 440–448, 2012, doi: 10.1016/j.enpol.2012.02.054.

[50] L. B. Ioanna Mouratiadou, Anne Biewald, Michaja Pehl, Markus Bonsch and E. K. David Klein, Alexander Popp, Gunnar Luderer, "The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways," Environ. Sci. Policy, vol. 64, pp. 48–58, 2016.

[51] K. Hussey and J. Pittock, "Guest Editorial, part of a Special Feature on The Energy-Water Nexus the Energy-Water Nexus : Managing the Links between Energy and Water for a Sustainable Future," Ecol. Soc., vol. 17, no. 1, 2012.

[52] A. Santhosh, A. M. Farid, and K. Youcef-Toumi, "Real-time economic dispatch for the supply side of the energy-water nexus," Appl. Energy, vol. 122, pp. 42–52, 2014, doi: 10.1016/j.apenergy.2014.01.062.

[53] W. N. Lubega and A. M. Farid, "Quantitative engineering systems modeling and analysis of the energy†"water nexus," Appl. Energy, vol. 135, pp. 142–157, 2014, doi: 10.1016/j.apenergy.2014.07.101.

[54] M. Falkenmark and D. Molden, "Wake Up to Realities of River Basin Closure," Int. J. Water Resour. Dev., vol. 24, no. 2, pp. 201–215, 2008, doi: 10.1080/07900620701723570.

[55] World Bank, “Crude Oil (petroleum) - Monthly Price - Commodity Prices - Price Charts, Data, and News - IndexMundi.” Available: http://www.indexmundi.com/commodities/?commodity=crude-oil&months=120. [Accessed: 17-Nov-2019].

[56] FAO, "FAO Food Price Index | FAO | Food and Agriculture Organization of the United Nations." Available: http://www.fao.org/worldfoodsituation/foodpricesindex/en/. [Accessed: 17-Nov-2019].

[57] S. Clayton et al., "Psychological research and global climate change," Nat. Clim. Chang., vol. 5, pp. 640–646, 2015, doi: 10.1038/NCLIMATE2622.

[58] The data Team, “Global population forecasts,” The Economist, 2016. Available: http://www.economist.com/blogs/graphicdetail/2015/08/daily-chart-growth-areas. [Accessed: 30-Nov-2019].

[59] FAO, "Food Outlook: Global Market Analysis," Roma, 2008.

[60] A. D. Cuéllar and M. E. Webber, "Wasted Food, Wasted Energy: The Embedded Energy in Food Waste in the United States," Environ. Sci. Technol., vol. 44, no. 16, pp. 6464–6469, Aug. 2010, doi: 10.1021/es100310d.

[61] R. Gifford and Robert, "The dragons of inaction: Psychological barriers that limit climate change mitigation and adaptation." Am. Psychol., vol. 66, no. 4, pp. 290–302, 2011, doi: 10.1037/a0023566.

[62] Bjørn P. Kaltenborn, Olve Krange, and Torvald Tangeland, "Cultural resources and public trust shape attitudes toward climate change and preferred futures—A case study among the Norwegian public," Futures, vol. 89, pp. 1–13, 2017.

[63] G. Gauchat, "The cultural authority of science: Public trust and acceptance of organized science," Public Underst. Sci., vol. 20, no. 6, pp. 751–770, Nov. 2011, doi: 10.1177/0963662510365246.

[64] F. Bosello, R. Roson, and R. S. J. Tol, "Economy-wide estimates of the implications of climate change: Human health," Ecol. Econ., vol. 58, pp. 579–591, 2006, doi: 10.1016/j.ecolecon.2005.07.032.

[65] J.-C. Ciscar A. Iglesias, L. Feyen, L. Szabó, D. Van Regemorter, B. Amelung, R. Nicholls, P. Watkiss, O.B. Christensen, R. Dankers, L. Garrote, C.M. Goodess, A. Hunt, A. Moreno, J. Richards, A. Soria, "Physical and economic consequences of climate change in Europe.," Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 7, pp. 2678–83, Feb. 2011, doi: 10.1073/pnas.1011612108.

[66] REN21, "RENEWABLES 2015 GLOBAL STATUS REPORT," Paris, 2015.

[67] IPPC, "Climate Change 2007, the Physical Science Basis," 2007.

[68] T. L. Friedman, Hot, Flat, and Crowded: Why We Need a Green Revolution--and How It Can Renew America. London: Penguin, 2009.

[69] R. S. J. Tol, "The Economic Effects of Climate Change," J. Econ. Perspect., vol. 23, no. Spring, pp. 29–51, 2009.

[70] M. Yohe, G; Schlesinger, "The economic geography of the impacts of climate change," J. Econ. Geogr., vol. 2, no. 3, pp. 311–341, 2002.

[71] M. G. Martin, P.H.; Lefebvre, “Malaria and climate: sensitivity of malaria potential transmission to climate,” Ambio, vol. 24, pp. 200–207, 1995.

[72] Y. Matsuoka, T. Morita, and M. Kainuma, "Integrated Assessment Model of Climate Change: The AIM Approach," in Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, T. Matsuno; H. Kida, Ed.  TERRAPUB, 1994, pp. 339–361.

[73] T. Wheeler and J. von Braun, "Climate Change Impacts on Global Food Security," Science, vol. 341, no. 6145, pp. 508–513, 2013.

[74] D. J. Arent, A. Wise, and R. Gelman, "The status and prospects of renewable energy for combating global warming," Energy Econ., vol. 33, pp. 584–593, 2011, doi: 10.1016/j.eneco.2010.11.003.

[75] D. White, J. Jones, R. Maciejewski, R. Aggarwal, and G. Mascaro, "Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance," Sustainability, vol. 9, no. 12, p. 2204, Nov. 2017, doi: 10.3390/su9122204.

[76] N. Pidgeon and B. Fischhoff, "The role of social and decision sciences in communicating uncertain climate risks," Nat. Publ. Gr., vol. 1, pp. 35–41, 2011, doi: 10.1038/NCLIMATE1080.

[77] L. C. Hamilton, "Education, politics and opinions about climate change evidence for interaction effects," Clim. Change, vol. 104, no. 104, pp. 231–242, 2011, doi: 10.1007/s10584-010-9957-8.

[78] E. Hestness, R. C. McDonald, W. Breslyn, J. R. McGinnis, and C. Mouza, "Science Teacher Professional Development in Climate Change Education Informed by the Next Generation Science Standards," J. Geosci. Educ., vol. 62, no. 3, pp. 319–329, Aug. 2014, doi: 10.5408/13-049.1.