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ABSTRACT    

In the context of the industrial grinding process, the quality of 

products is often assessed by the final surface roughness, which is 

influenced by various parameters in the industrial environment. 

Previous studies lacked a feasible formulation based on a 

kinematical and statistical model to explain the uncertainty and 

non-linearity of grinding conditions, particularly concerning the 

cooling method, leading to significant discrepancies between the 

formulated and real results. This study introduces a novel strategy 

that combines deep learning and optimization to establish a suitable 

framework. It employs an artificial neural network to simulate and 

predict surface roughness, considering various dressing and cooling 

parameters in the industrial grinding of St37 steel alloy. Initially, an 

analysis of variance (ANOVA) is conducted to determine the 

correlation between input and output data. Subsequently, a neural 

network approach with one and two hidden layers, incorporating 

various activation functions, is employed. Therefore controlling and 

improving the accuracy of surface roughness predictions in 

industrial grinding processes can be automated. The mean squared 

error (MSE) metric is applied to each implementation to identify the 

best network architecture for the dataset. Upon selecting the 

network with the lowest MSE, the final algorithm predicts a set of 

randomly selected data from the dataset, achieving an overall 

accuracy of 80%. When compared to the accuracy of the formulated 

implementation, the neural network approach demonstrates a 

significantly higher accuracy of up to 30%, surpassing conventional 

analytical formulation in predicting final surface roughness. These 

results underscore the considerable potential and feasibility of deep 

learning approaches for industrial applications. 
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1. Introduction 

State-of-the-art engineering materials have 
been extensively used in power plant and 

energy industrial applications during the last 
two decades [1]. Grinding is a displacement or 
position-controlled processing procedure 
where the excess material from the workpiece 
surface is removed by using an abrasive tool. 
The benefits include a high material removal 
rate, finer surface finishes, and more prolonged 
production runs [2]. Grinding is a widely used 
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machining process for material removal 
roughing and high-quality finishing operations. 
Wheel preparation is a vital stage in this 
process: truing, dressing and conditioning [3]. 
The ground surface roughness is a prominent 
resultant of any grinding process depending on 
the interaction of multiple factors like grinding 
condition and wheel properties. The value 
prediction of surface roughness due to the 
complexity of the real-world procedure is more 
attention. The empirical and analytical methods 
find an applicable relationship between the 
number of active cutting edges and the surface 
roughness based on the grinding experiment. 
The traditional statistical analysis, for example, 
evaluates a distribution function of the grain 
protrusion heights considering the stochastic 
nature of the grinding wheel topology. 
However, the predicted value based on these 
methods is up to three orders of magnitude 
smaller than the measured value [4].  

The manufacturing of industry 4.0 vision 
sets a set of special considerations [5], and any 
grinding process is regarded as one of the most 
important factors in evaluating the quality of 
final products due to these criteria; however, 
for example, wheel type and topography, wheel 
dressing and conditioning, sizes and wheel-
workpiece speed ratio, cooling and lubricating 
conditions [6], which are interdependent and 
even non-linearly [7, 8]. The grinding wheel is 
an uncommon factor, among others, 
distinguishing the grinding process from other 
cutting processes. The wheel topography and 
prepared conditions broadly influence the 
grinding performance [9, 10]. Surface 
roughness also signifies the portion of energy 
and other resources swallowed during 
machining [11]. To minimize energy 
consumption and heat reduction dressing 
procedure should bring an appropriate suitable 
topography to the wheel-cutting surface [12]. 
Besides dresser topography, dressing depth, 
dressing lead/traverse rate, the type of dresser 
used, and the number of dressing passes [13], 
the cooling method is another demand that 
must be in the contraction of research. The 
thermal damage will produce undesired surface 
roughness and several cooling alternatives like 
minimum quantity lubrication (MQL) is a 
replacement for dry machining in which a 
minimum quantity of lubricant fluid is mixed 

up with compressed air and sprayed 
periodically on the machining area [14, 15]. 
Applying the MQL approach can decrease the 
grinding forces, energy consumption, wheel 
wear, and production costs and generate an 
adequate surface finish and improved surface 
integrity compared to dry and fluid conditions 
[16]. The application of green machining 
techniques for sustainable manufacturing 
becomes more and more attractive nowadays to 
reduce the consumption of energy and cutting 
tools and cutting fluids and consequently 
decrease the production costs and 
environmental effects due to this regard 
generate different grinding wheel topographies, 
depth of dressing and dressing speed has been 
changed during dressing and conditioning of 
vitrified Al2O3 wheels using a single point 
diamond dresser [17].  

Furthermore, the drawbacks of conventional 
modeling like kinematics and statistics are 
strongly sensitive to parameter considerations. 
Besides, the statistical approach could not 
define qualitative parameters like cooling 
methods. In this regard, several examinations 
apply to alter the surface condition in front of 
parameters. However, besides analyzing 
experimental data with theoretical and 
statistical implementation, many studies use 
prediction methods like artificial neural 
network algorithms to find an association 
between parameters. In the literature review, an 
existing context in the field of machining and 
grinding processes involves the evaluation of 
neural networks to determine the relationships 
between various parameters. 

Several deep learning model 
implementations have been conducted in recent 
years [18] to provide a model to predict surface 
roughness in cylindrical grinding of Al-SiC 
work pieces by a standard aluminum oxide 
grinding wheel using a feedforward artificial 
neural network. The study includes a single 
hidden layer ANN with 12 neurons that runs on 
a small data set with 25 samples. The data set 
consists of four parameters wheel velocity, 
feed, workpiece velocity, and depth of cut as 
input. The simulation results bring a prediction 
accuracy of around 94%. Parameters 
optimization by neural network model is 
another interesting criterion that was 
implemented in various studies. Therefore, in 
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[19], an optimization model on ductile cast iron 
grinding with wet and minimum quantity 
lubrication (MQL)cooling conditions was 
developed by an artificial neural network based 
on the DOE method. At the continuation of the 
study, analyze variance with the ANN to 
investigate significant effects on the 
performance characteristics and the optimal 
cutting parameters of the grinding process. The 
surface roughness and material removal rate 
(MRR) were measured and used in the 
feedforward neural network for output. The 
grind wheel life directly affects the final 
performance of the CNC machining and 
grinding process. The results in [20] presented 
an experiment on actual historical data 
collected over five processes and optimization 
schemes using neural model-based to control 
strategies on the industrial grinding process. 
Optimizing cooling methods by the effects of 
nanofluids on machining steel-based tools 
using neural networks is another aspect of the 
study. In this way, the research done in [21] 
provides a small data set to evaluate and 
measure the performance of the network using 
R2 metrics. Besides, the analysis of variance 
(ANOVA) finds the significant factors that 
affect the surface roughness in the process. 
Unlike conventionally available methods to 
predict a relation between grinding parameters 
and state-of-the-art surface roughness for an 
advanced industrial solution, the newly 

implemented method seems to overcome the 
complexity of prediction environments. 
Medical implants were manufactured on 
special materials like stainless steel, titanium, 
and CoCrMo alloys. These materials were 
presented earlier in high-demand construction 
like aircraft and satellites due to the high-
temperature corrosion. The study by [22] 
provided that WPD and EEMD process signals 
were collected during the grinding using a 
hybrid and long short-term memory network 
model that uses RNN to predict various input 
signals. Composite materials like super alloys 
provide a sophisticated infrastructure for high-
end production, and due to the wide range of 
the usage of these materials, it is common that 
many contexts available in the field machining 
process. In addition, the results of a study in 
[23] evaluate the influence of the axial depth of 
cut, feed per tooth, and cutting speed process 
parameters on the surface roughness. 
Therefore, developed statistical techniques to 
identify the relation between parameters as a 
prediction method, and then the ANN models 
were used to obtain a higher accuracy of 
prediction. Tables 1 and 2 illustrate a complete 
summary of available research in the industrial 
grinding and machining process that 
implements artificial neural networks as a 
ground truth approach to predict and find a 
relation between input parameters and surface 
roughness. 

Table 1. The overall schema of available research that implements any neural network algorithms to predict 
grinding parameters 

 Neural Network method 
Input 
size 

Measured target 
output 
size 

Cooling 
Type 

Data 
set size 

Developed 
platform 

1 
Cutting speed, Wheel 

speed 
Feed, Depth of cut 

4 Surface roughness 1 N/A 25 MATLAB 

2 
Table speed 
Depth of cut 

2 
Surface Roughness, 

MRR 
2 

Wet 
MQL 

27 MATLAB 

3 N/A N/A 
lifetimes to gauge 
the performance, 

Removal rates 
N/A N/A N/A N/A 

4 
Cutting speed, Feed 

Depth of Cut 
3 Surface Roughness 1 

nanofluids 
 

8 MATLAB 

5 
Grinding force, Vibration, 
Acoustic emission signals 

N/A Surface roughness N/A N/A N/A N/A 

6 
Axial Depth of Cut, Feed 
per Tooth, Cutting Speed 

3 Surface roughness 1 Dry 15 LabView 
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Table 2. Implementing appropriate input and target parameters is necessary for a supervised neural network 

 Grinding type 
Simulation 

method 
Alloy workpiece Wheel type Year Reference 

1 
cylindrical 
grinding 

ANN 
LM25/SiC/4p metal 
matrix composites 

(MMC) 

vitrified‐bonded 
white aluminum 

oxide 
2014 [18] 

2 
surface 

grinding 
ANN ductile cast iron 

vitrified bond 
aluminum oxide 

PSA-60JBV 
2015 [19] 

3 disk grinding ANN aluminum N/A 2005 [20] 

4 
CNC surface 

grinding 
ANN raw steel 

10 um vitrified 
alumina grinding 

wheel 
2014 [21] 

5 
surface 

grinding 
LSTM 
(RNN) 

C-250 maraging 
steel 

CBN grinding 
wheel 

2021 [22] 

6 dry end-milling ANN 

Co–28Cr–6Mo 
Co–20Cr–15W–10Ni 

both biomedical 
alloys 

AlTiCrSiN PVD-
coated tool 

2021 [23] 

 

Literature review shows that it is necessary 
to conclude the most important aspects that did 
not appear in the previous research; such as: 

 the effects of dresser parameters on 
surface roughness 

 cooling method which is another crucial 
parameter that is negligible or just one 
method used as a default 

 researchers use a small portion of the 
data set for studies and neural network 
implementation 

 for a professional neural network 
implementation, different structures and 
architecture must be considered, like 
different neuron sizes and activation 
function 

2. Materials and Methods 

2.1 Neural network 

The concept behind the neural network is to 
simulate human brain functionality like training 
and learning by mathematical and statistical 
formulation [24]. For emulation of a human 
neural network, an artificial neural network 
consists of simple computing units called 
neurons, each unit connects via weighted 
connectors, and the optimum computing weight 
related to specific inputs call learning [24, 25]. 
The artificial neural network is a part of a 
machine learning procedure that produces 
unique computational implements based on a 

statistical approach to solve real-world 
problems. The outstanding feature of this 
approach is the ability to overcome nonlinearity, 
parallelism, and noise tolerance [26]. The 
learning system comprises the relationships 
between the data. Data is input along with the 
consequences related to the data. The system 
training and the neural network algorithm relate 
the data to the results and create rules that 
become part of the system[27]. In the field of 
neural networks, there are several varieties 
based on architecture and data structures, but 
there are three primary majors that are 
distinguishable in this field Artificial Neural 
Networks (ANN), Convolution Neural 
Networks (CNN), and Recurrent Neural 
Networks (RNN). The Artificial Neural 
Network (ANN) is a group of multiple 
perceptrons (or neurons) at each layer. ANN is 
also known as a Feed-Forward Neural network 
because the inputs are processed only in the 
forward direction [28]. The ANN is capable of 
learning and solving any nonlinear function[26], 
and because of that, this network is popularly 
known as Universal Function Approximation. 
One of the main reasons behind this is to choose 
any appropriate transfer function for any neuron 
in the network. In general, the ANN is 
appropriate to overcome problems related to 
tabular data (regression methods), image data 
(classification), and text data. However, the 
ANN uses a backpropagation algorithm for 
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finding gradient error and minimizing it. In 
some cases, due to the intense network (network 
with a large number of hidden layers), these 
algorithm leads to vanishing and exploding 
gradient. Also, the ANN cannot predict 
sequential information in the input stream [29]. 
The multilayer perceptron neural network 
(MLP) is a feedforward structure in which the 
nonlinear components (neurons and nonlinear 
transfer function inside) are connected in a 
straight layer style, and the calculation and data 
stream flow unidirectionally from inputs to 
output (Fig. 1). The number of input and output 
depends on the representations of problems and 
data sets available for prediction. The MLPs 
with an arbitrary number of hidden units are 
universal approximators for continuous maps to 
implement any function [30]. 

2.2 Experimental Setup 

The experimental data have been collected from 
the previous study [14], conducted by a vitrified 
bond Al2O3 grinding wheel. The workpiece was 
St37-soft steel (83±3 HRB) with a 65-mm 
length in grinding direction and 12 mm in 
width. A Single-point diamond dressing tool 
was used with an access angle 𝛼𝑑=10°. Three 
different cooling methods were utilized during 
the grinding process: dry, water-based, and 
MQL with compressed air and argon. The 

surface roughness measurements were 
performed after the tenth pass by a mobile 
roughness measurement (Surface Tester-TR200 
with a cutoff length of 0.8 mm according to DIN 
EN ISO 3274:1998). At the end of each test, Ra 
across the grinding direction was measured at 
five different points on the ground surface. The 
evaluated grinding experiments consist of 
several fixed parameters, and a few parameters 
vary during the process to measure their effects 
on the surface roughness as an output parameter. 
Table 3 illustrates a complete description of all 
fixed parameters during the current experiment. 

In case of monitoring the sensitivity of 
surface roughness to special grinding 
conditions, the study assumes that Ra has a 
direct correlation with the undeformed chip 

thickness (ℎ𝑒𝑞  =
𝑄𝑤

′

𝑉𝑐
), depth of dressing (𝑎𝑑), 

axial feed (pitch) of the dressing tool per wheel 
revolution is called the dressing lead (or axial 
dressing tool traverse across grinding wheel 
surface) - (𝑠𝑑) and also different cooling 
methods. Besides the qualitative variable 
parameters like 𝑎𝑑 and 𝑠𝑑, the cooling methods 
also directly affect surface roughness, but this 
is a qualitative parameter with no quantitive 
amount defined for them. All these variable 
parameters are depicted in the Table 4. 

 

Fig.1. Any neural network architecture includes input and output layers in every case. The hidden layers define 
the complexity of the network 
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Table 3. Experimental setup and parameters 

Grinding elements  Parameters  
Mode Plunge surface grinding, down cut 
Machine  MST-300-1000 universal surface grinder 
Wheel 𝐴𝑙2𝑂3: AW60L5V28103 (ds=250 mm) 
Wheel Speed (𝑽𝒄) 26 m/s 
Feed Rate (𝑽𝒇𝒕) 2500 mm/min 
Depth of Cut (𝒂𝒆) 5 μm 

Coolant-lubricant environments 
Dry, Fluid (water-based), MQL with compressed air, 
MQL with compressed Argon 

Conventional Coolant Wet Water-miscible coolant lubricant at 5% concentration 
Conventional Coolant Flow Rate 18 lit/hr 
MQL Oil Vegetable oil 
MQL flow rate 150 ml/hr 
MQL Viscosity (at 20oC) 84 cP 
MQL Carrier Gas Compressed air, Compressed Argon 
MQL Gas Pressure 4bar 
Workpiece Material St37-soft steel with 83±3 HRB 
Workpiece Dimensions 65mm×12mm×58mm 
Dresser Material  Diamond 
Dresser Type Single point 
Dresser Access Angle (𝜶𝒅) 10o 

Table 4. In the current implementation, several grinding parameters are assumed to be set and changed in five 
important parameters defined in the table, and each parameter has several quantities. 

Grinding variable parameter  Value 
Depth of each dressing pass (𝒂𝒅) 3,15,30,45 µm 
dressing lead; axial dressing tool traverse across grinding 
wheel surface (𝒔𝒅) 

0.06041, 0.1762, 0.3021 mm 

Cooling Type Dry, Wet, MQL with air, MQL with Argon 
 

2.3 Cooling and Dressing Methods 

Excessive heat generated during the grinding 
process can damage the work material's surface 
and flaws due to inadequate removal rates and 
wheel wear [31]. Power consumed by the 
process flows into the wheel, work, chip, and 
coolant. The heat entering the workpiece must 
be removed quickly to prevent high local 
temperatures and phase transformations from 
developing and prevent high residual 
temperatures after the wheel has passed [32]. 
For this reason, an appropriate cooling method 
like dry or lubricating fluid and process 
parameters can help reduce heat generation. 
The application of an appropriate cooling 
method performs a significant role in the 
quality of grinding surface roughness [33]. In 
dry grinding conducted in standard machining 
processes like milling, drilling, and turning 
because of saving a large number of resources 
such as cooling lubricant, pump system, and 

also air pressure system made the whole 
dimensions of the system quite compact and 
there it is common in the most grinding process 
[34]. Dry grinding provides a perfect optical 
view, direct cutting force measurements, and 
the simplified determination of process heat 
flows, but the main demand is excessive heat 
generation. The application of water-based 
cutting fluids due to less environmental threat 
in addition to high thermal conductivity and 
supreme cooling/lubricating efficiency is 
sufficient [35]. Coolants and lubricants have an 
important place in the industry in terms of both 
environmental, health, and economic aspects 
[32]. The minimum quantity lubrication 
(MQL) originally has been developed 
primarily to reduce the cost of production by 
utilizing a less amount of lubricant (Table 5). 
The MQL method, where oil is utilized as 
cutting fluid, is found to improve the 
lubrication to a considerable extent and the 
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specific energy requirement becomes less 
compared to the conventional jet cooling 
method. However, the tool's and work surface's 
cooling capacity are poor [33]. This technique 
is a recognized opportunity to eliminate 
environmental concerns [32]. 

The dressing is the key factor determining 
the grinding wheel surface condition 
(topography) in micro/macro conditions, which 
determines the grinding wheel performance 
[40]. The conventional mechanical dressing 

process is nowadays the most widely used 
dresser tools in industry, including stationary 
dressers and rotary dressing wheels [41]. For 
this reason, mechanical dressing with diamond 
tools has become a popular method for 
retrieving the grinding capabilities and wheel 
geometry. The stationary type consists of a 
single-grain diamond that is embedded in one 
shank and a multi-point tool that has many 
small diamonds embedded into the one 
diamond section [42] (Fig. 2). 

Table 5. Mineral-based cutting fluids are common practice in the industry; however, they are hazardous to our 
ecology and health. There is a need to implement a sustainable cooling/lubrication system that helps 

the environment and improves the machinability of alloys [39]. The current table illustrates three main 
categories of cooling methods in the industry. 

Coolant Category Materials Symbol description  

Dry 
Air Dry Air jet [34], sometimes steam contained in the air [36] 

Cold air guns CAG 
A method to obtaining cold air using the phenomenon 
occurring in the centrifugal tube [36] 

Water Base 
Water with Oil Wet A mixture of water and soluble oil [38, 39] 
Water, Surfactant, 
Graphene 

Wet, W-S 
W-G 

A mixture of Water with Surfactant or Graphene or 
both (Ni et al., 2019) 

Minimum quantity 
lubrication (MQL) 

Oil Base MQL 
A mixture of oil and compressed air sprayed on the 
grinding wheel [32] 

Water Soluble Oil 
and Air 

MQC 
A mixture of water and compressed air. this method is 
more efficient than MQL in terms of cooling but 
lubrication lower than MQL [36] 

Oil and Air MQCL 

A unique method consists of certain oil with low 
viscosity and compressed air with a temperature of 
around -30, which increase the efficiency of cooling 
besides lubrication [32, 36] 

Oil and Cold Air CAMQL 
Oil transported by a stream of compressed cooled air 
[36] 

Oil and Cold Air CAOM 

A cold air and oil mist method, oil transported by 
compressed air stream using MQL method and an 
additional 
cold compressed air stream delivered simultaneously 
by the cold air gun [36] 

 

Fig. 2. The diagram of available industrial diamond dresser tools in the market 
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3. Results and discussion 

3.1 Implementing Data-set 

Machine learning and deep learning models are 
very powerful in predicting various 
phenomena. Those models require a particular 
amount of data to train on to achieve 
reasonable predictions, whereas this amount is 
generally limited and challenging to obtain 
[43]. It is common knowledge that few training 
data results in a poor approximation. In other 
words, too little test data will result in an 
optimistic and high variance estimation of 
model performance [44], regardless of other 
publications that did not consider any attention 
to the effect of data size on simulation purity. 
The current study provides sufficient data, 
including 57 different conditions in the 
industrial grinding process. The data set 
includes five different parameters. Three of 
them are input measured before the setup 
experiments procedure, and one of them is the 
mean surface roughness that was measured 
three times from three different points by a 
standard calibrated device. The last row of data 
is calculated surface roughness by the 
experimental formula conducted in the 
previous study. The most sophisticated part of 
data-set implementation is to describe 

qualitative parameters as a part of quantitive 
ones to be processable in any prediction 
algorithms. For this reason, assigning a non-
zero positive real number for each type of 
qualitative input parameter is necessary. The 
cooling methods implemented in the study 
were Dry, Wet, MQL with Air, and MQL with 
Argon; therefore, four numbers like 1 to 4 were 
assigned to them. All the parameters and 
assignments are tabulated in Table 6 and the 
random data for the primary data set are 
illustrated in the Table 7. 

Another assumption in the previous study 
was a direct correlation between ground 
surface roughness and grinding parameters like 
undeformed chip thickness, depth of dressing, 
and axial dressing tool traversing across 
grinding wheel surface and also cooling 
method. The relation was described in (Eq.1), 
where 𝑄𝑤

′  is the volumetric removal rate per 
unit width and 𝑅1 is an experimentally 
determined constant for different cooling 
conditions. Table 8 shows different values of 
𝑅1 for four coolant-lubricant conditions used in 
the study. 

0.25
'

0.5 0.25
1   w

a d d

c

Q
R R s a

V

 
  

 
 (1) 

Table 6. As mentioned in table 5, the current implementation contains three parameters as input, each of which 
has several values illustrated in this table. 

Grinding variable parameter  Value 
Depth of each dressing pass (𝒂𝒅) 3,15,30,45 um 
axial dressing tool traverse across grinding wheel surface (𝒔𝒅) 0.06041, 0.1762, 0.3021 um 
Cooling Type Dry = 1, Wet = 2, MQL Air = 3, MQL Argon = 4 

 

Table 7. A set of 12 random data from the main dataset. The current dataset includes 57 sets of data for the 
grinding process. 

 
Input Parameters Output Parameters 

𝒂𝒅; (µm) 𝒔𝒅; (mm) Cooling Type 𝑹𝒂 (𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕); (µm) 𝑹𝒂 (𝑭𝒐𝒓𝒎𝒖𝒍𝒂); (µm) 
1 3 0.1762 1 0.357 0.4525 
2 15 0.06041 1 0.535 0.471 
3 10 0.157 1 0.46 0.869 
4 3 0.3021 2 0.57 0.4837 
5 30 0.1762 2 0.42 0.6569 
6 45 0.06041 2 0.53 0.4256 
7 15 0.06041 3 0.454 0.3898 
8 30 0.3021 3 0.843 1.037 
9 45 0.1762 3 0.74 0.8763 

10 3 0.3021 4 0.45 0.4695 
11 10 0.157 4 1.47 1.02 
12 30 0.1762 4 0.498 0.6376 
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Table 8. 𝑹𝟏 Values for different coolant-lubricant conditions 

Grinding condition Dry Wet MQL with Air MQL with Argon 
𝑹𝟏 0.0864 0.07054 0.085025 0.06847 

 

 

Fig. 3. The effects of depth of dressing on final surface roughness at the different cooling methods and also 
different axial dressing tools traversing across grinding wheel surface. The plot includes experimental 

data (Exp) and formula-based calculated data (FM) 
3.2 The effects of Cooling and Dresser 

In the first steps, to investigate the effects of 
different factors on the surface roughness as 
target parameters plotting software is 
employed. The data set includes 57 different 
points on various conditions from surface 
grinding St73-soft steel. It is worth mentioning 
that due to the influence of dresser parameters 
and cooling conditions on the final results. 
Before each test, the health of tools (especially 
the grinding wheel and dresser) was examined, 
and also, after each dressing procedure, the 
examination rehappened. As a result, shown in 
Fig.3, four different plots are available, and all 
of them investigate the effect of depth of 
dressing pass on the final surface roughness. 
For each cooling method, each plot includes all 

the axial dressing tools traversing across the 
grinding wheel surface (sd) as the second 
effective parameter on the final condition. It is 
clear that surface roughness can be worse by 
the increasing depth of pass and dressing 
traverse.  

On the other side, the effects of the cooling 
method on the final surface condition show 
that the MQL with Argon gas can bring the 
best result in the small depth of dressing and 
feed, but in harsh conditions, none of the 
cooling methods can stand aside exceeding the 
temperature and final surface roughness get 
worse and also in some situation workpiece 
surface got burned. Besides experimental data, 
the formulated situation is plotted and 
illustrates that formulation cannot accurately 
calculate the fine results and especially the bias 
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between real data and formulated one in the 
harsh condition is so high. 

It is crucial that finding an appropriate 
solution to predict or calculate surface 
roughness can help industries for less activity 
in many aspects; to improve the machining 
process, a surface roughness prediction model 
is developed. There are three common 
techniques for the development of a prediction 
model: multiple regressions that use machine 
learning algorithms for prediction, physics-
based modeling that implements mathematical 
formulation to investigate results from 
available grinding parameters, and ANN 
technics. The ANN is one of the most widely 
used artificial intelligence techniques and has 
been successfully employed by researchers. It 
has the ability to learn the mapping between a 
set of input and output values. 

3.3 ANOVA Analysis 

The Analysis of Variance (ANOVA) test has 
long been a vital mechanism for researchers 
performing studies on multiple experimental 
classes. However, it cannot provide precise 
information on differences among the various 
study groups between them or on complex 
combinations of groups [45]. ANOVA is used 
to disintegrate the entire variability to quantify 
the effect of input parameters on output ones 
[46]. The percentage contribution of inputs was 
estimated based on the sum of squares of 
responses. This method of portioning 
variability into identifiable sources of variation 
and the associated degree of freedom in the 
model [18]. The current study considers three 
parameters as control (input) parameters, and 
surface roughness for this data set was 
evaluated from the experimental value of the 
data set. Table 9 illustrates the response 
surface; quadratic models summarize the 
ANOVA of each response and show the 

significant model terms of analysis on the 
current data set. 

3.4 Network configuration  

The multilayer perceptron neural network 
(MLP) is a feedforward structure neural 
network in which the nonlinear elements 
(neurons and nonlinear transfer function 
inside) are connected in a successive layer 
manner [30]. The number of input and output 
depends on the representations of problems and 
data sets available for prediction [47]. As 
mentioned before, for the current study, both 
neural network with one hidden layer (Fig. 4a) 
and two hidden layers (Fig.4b) was 
implemented to enrich a proper configuration 
for the data set. In Fig.4, suppose that there are 
m input series in the input layer (for the current 
study, m is 3), and for each data series 𝑥𝑖  (𝑖 =
1,2, … , 𝑚) represents the inputs to hidden layer 
neurons. In the same way, defining the output 
of neurons in the hidden layer, 𝑗 represents the 
number of neurons, and 𝑦𝑗  represents the 
output of neurons in the hidden layer. The 
network has just one neuron as the output 
layer, and therefore 𝑧 represents the output 
layer's final result. For the hidden layer, the 
bias value is 𝛾, and 𝜔 is the connection weight 
from the input layer to the hidden layer. 
Consequently, for the output layer, 𝜃 
represents bias, and 𝜈 represents the connection 
weight from the hidden layer to the output 
layer. The overall simplified relation between 
input and output for one hidden layer network 
is defined by 
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Table 9. The final solution of the ANOVA implementation on the current data set 

Parameter Sum Sq. dF Mean Sq. F P-Value 
Cooling Type 0.316 3 0.105 2.77 0.055 

𝑎𝑑 0.763 3 0.254 6.68 0.001 
𝑠𝑑 1.936 2 0.968 25.39 0 

Error 1.486 39 0.038 - - 
Total 4.502 47 - - - 
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Fig. 4. The feedforward neural network with one hidden layer (a) and two hidden layers (b), also known as the 
deep-learning network, implies something profound. This system uses a deep thinker algorithm to reach 
a reasonable answer. Both architectures were implemented in an intelligence coding algorithm to reach 
the best structure with a reasonable solution. 

For a network structure with two hidden 
layers (Fig.4b), Eqs. (2) and (3) do not change. 
Where upper right index 1 refers to the first 
hidden layer and upper right index 2 refers to the 
second hidden layer. However, the final result of 
the second hidden layer is the input of the output 
layer and does not change on objective function 
definition, but it is clear that partial calculation 
for a deep network, as given by 
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is more difficult. The Training network aimed 
to determine the optimum network parameters, 
including the number of hidden layers, hidden 
neurons, transfer function layers, and weight 
values for achieving the best network of 
modeling. Parameters were usually changed to 
minimize network errors in training and testing 
mode to obtain the optimum model. To reach 
an optimum model, several parameters are 
defined as the fixed structure of the network 
and shown in Table 10, then implement both 
one hidden layer and two hidden layers 
structures separately with neuron size change 
and to verify the network accuracy of the MSE 
parameters evaluated, the results of the trained 
network illustrated in Fig. 5. 

Table 10. The overall ANN properties of the current implementation 

Network Configuration 

 

Learning Condition 

Object model 𝑅𝑎 Learning Scheme 
Supervised 
Learning 

Input neurons 
𝑎𝑑 

𝑆𝑑 
𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑇𝑦𝑝𝑒 

Learning rule Gradient descent 
Hidden neurons 6 ~ 20 
Output neuron 1 

Output neuron 𝑅𝑎 Sample pattern 
80% train 

10% validation 
10% test 

Transfer Functions 
Purelin 
Tansig 
Logsig 

Learning rate 0.01 

Marquart adjustment Mu = 0.05 

Training Function TRAINBR Max. epoch 1000 
Learning Function LEARNGDM Goal 0.001 
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Fig. 5. The final results of different network implementations are depicted in the above figure. As mentioned, 
two network structure with one hidden layer and two hidden layers was implemented. Each hidden layer 

contains activation functions like tansig and logsig and several neuron sizes. This figure illustrates the 
number of neurons size versus MSE for accuracy metrics of implemented network. 

Accuracy metrics refer to the procedure used 
to evaluate machine learning predictions' 
validity. However, selecting an appropriate 
accuracy metric for assessing a specific 
prediction has not yet been specified [47]. The 
correlation coefficient (𝑅) and coefficient of 
determination (𝑅2) are widely used for the 
evaluation of the goodness of linear fit of 
regression models in ANNs [48]. The 𝑅 value 
represents the degree of correlation between the 
actual and predicted variables and can vary from 
−1 to +1. The value of +1 (or −1) indicates the 
perfect correlation between two variables. The 
𝑅2 value is the ratio of the predicted variable 
that explains the regression model. In other 
words, it is the ratio of the explained variable to 
the total variable. 𝑅2 is the square of correlation 
between the actual variable and predicted, 
which is calculated using  
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where 𝐷𝑎𝑐𝑡 is the actual variable, 𝐷𝑝𝑟𝑒 is the 

predicted variable, �̅�𝑎𝑐𝑡is the mean value of the 
actual variable, �̅�𝑝𝑟𝑒 is the mean value of the 
predicted variable, and 𝑛 is the amount of 
collected data. Metrics based on absolute errors 
or squared errors are called scale-dependent 
metrics [49]. The scale-dependent metrics have 
the same scale as the original data and provide 
errors in the same units [39]. However, the 
scale-dependent metrics can be difficult to 
compare for series on different scales or with 
different units. Although the scale-dependent 
metrics are not unit-free, they are favored in 
machine learning evaluation. The commonly 
used scale-dependent metrics is MSE [47] 
given as 
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As shown in Fig.5, the best structure for 
neural network implementation with stable 
behavior is related to the logsig transfer 
function; furthermore, this transfer function 
provided better results for both single-layer and 
dual layers neural networks. In this conclusion, 
the final results for a single-layer neural 
network with 16 neurons and dual-layers with 
eight neurons in each layer are shown in Table 
11 and Fig.6. 
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Table 11. The final results of the dual and single-layer neural network on a random set of data set a test bench 

Dual hidden layers neural network Single hidden layer neural network 

Cooling 𝒂𝒅 𝑺𝒅 
Ra 

(Exp.) 
Ra 

(Pred.) 
1 3 0.3021 0.75 0.9495 
1 15 0.06041 0.498 0.8761 
1 30 0.3021 1.02 1.0699 
2 3 0.3021 0.57 0.6284 
3 3 0.1762 0.323 0.354 
3 15 0.06041 0.454 0.4264 
3 30 0.1762 0.731 0.664 
3 45 0.3021 1.32 1.4297 
4 30 0.06041 0.441 0.3867 
4 45 0.06041 0.447 0.4352 

 

Cooling 𝒂𝒅 𝑺𝒅 
Ra 

(Exp.) 
Ra 

(Pred.) 
1 15 0.1762 0.615 0.5546 
1 15 0.3021 0.99 0.8239 
1 45 0.3021 1.3 1.2385 
2 45 0.1762 0.545 0.7345 
3 15 0.06041 0.454 0.3823 
4 3 0.1762 0.35 0.3807 
4 3 0.3021 0.45 0.6786 
4 15 0.06041 0.349 0.3968 
4 15 0.3021 0.683 0.8425 
4 30 0.06041 0.441 0.436 

 

 

 

Fig. 6. Results demonstration and comparison for both dual and single-layer neural network 

The test data set is a small portion of 
random data from the main data set. The 
results of the implemented neural network 
provided an accuracy of around 80%, 
illustrated in Table 11 and Fig. 6. However, 
from the final results, the dual-layer neural 
network provided a more accurate prediction 
than the single layer. 

4. Conclusion 

The present study investigates the impact of 
industrial dressing process parameters and 
grinding cooling-lubricating methods on 
surface roughness, considering dressing depths 
of 3, 15, 30, and 45 μm, dressing leads of 
0.06041, 0.1762, and 0.3021 mm, and four 

cooling methods: dry, water-based grinding 
fluid, MQL with compressed air, and MQL 
with Argon. The study uses St37 soft alloy as 
the workpiece material. The key findings of 
this research are as follows: 

1. Increasing the depth of cut and axial 
traverse rate of the dresser leads to a 
higher number of cutting micro-edges 
and increased heat generation in the 
grinding zone. Water-based and MQL-
based methods effectively dissipate heat, 
with MQL using Argon being 
particularly efficient due to its superior 
heat transfer coefficient. However, at 
higher cut depths and traverse rates, the 
generated heat can surpass the coolant's 
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heat transfer capacity, potentially 
resulting in workpiece burning and 
inadequate surface roughness. 

2. The ANN-based predictive model 
demonstrates promising performance in 
predicting surface roughness, achieving an 
average percentage error of approximately 
20% on the existing dataset. The model is 
used to analyze the influence of process 
parameters on surface roughness.  
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