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ABSTRACT    

In this review article, the thermal performance of dual-tube heat 
exchangers with smooth walls is investigated in the presence of 
nanofluids. Important challenges in industrial and engineering 
processes, such as the failure of thermal devices to respond to 
higher capacities, conservation, saving, and optimization of 
energy, have been discussed in recent years. Heat exchangers are 
one of the types of thermal devices that are used in a wide range of 
engineering and industrial applications. The use of nanofluids is 
one of the most effective ways to enhance the thermal conductivity 
of heat exchangers in the industry. In this research, the types of 
heat exchangers are first introduced. Then, the methods of heat 
transfer enhancement (active, passive, and combined) are 
discussed. The introduction and method of preparing nanofluids 
are discussed, and finally, the studies on dual-tube heat exchangers 
in the presence of nanofluids are described. This review article 
examines previous studies on dual-tube heat exchangers and the 
use of nanofluids in them (216 references and 73 journals). The 
purpose of this article is to familiarize the readers with the types of 
heat exchangers and to understand the mechanisms of heat 
transfer in the context of using nanofluids in smooth dual-tube 
heat exchangers. It can be concluded that nanofluids are a very 
good substitute for other fluids because the use of nanofluids in 
heat exchangers leads to an improvement in their performance, a 
reduction in their energy consumption and costs, a decrease in 
their volume, a reduction in environmental effects, etc. Eventually, 
the challenges in the use of nanofluids in flat dual-tube heat 
exchangers are discussed. The most important ones include the 
economic costs of using nanofluids, deposition and accumulation 
of nanoparticles over time, stability of nanofluids, and lack of 
standardization among various researches and evaluations. 
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1. Introduction 

One of the major challenges in the modern era is 
energy-saving and optimization. Thus, 

researchers in all fields of engineering and 
science related to energy are trying to overcome 
this concern. Significant advances have been 
made in the cooling and heating of industrial 
equipment, all of which have resulted in energy 
savings, heat transfer (HT) improvement, and an 
increase in the service life of machinery and 
equipment. One of the ways to save energy and 
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improve HT is to use heat exchangers (HEs). 
The purpose of this article is not only to review 
the previous studies but to familiarize the 
readers with the types of heat exchangers and to 
understand the mechanisms of heat transfer in 
the context of using nanofluid in smooth dual-
tube heat exchangers to save and optimize 
energy and enhance heat capacity. 

2. HEs 

A heat exchanger (HE) is a device in which 
heat is usually exchanged between two fluids 
(liquid-liquid / gas-gas / liquid-gas) or hot and 
cold sources. In HEs, two fluids usually 
exchange heat without contact. The cold fluid 
receives thermal energy in contact with the hot 
fluid and its temperature rises. Instead, the hot 
fluid cools down by losing heat. Heat exchange 
is based on the basic principles of heat transfer, 
i.e., convection and conduction can be 
described. In HEs, regardless of the energy 
dissipation, the amount of heat lost by the hot 
fluid and the amount of heat received by the 
cold fluid are equal. In general, HEs are 
responsible for heat exchange. HEs are used in 
a wide range of applications such as power 
plants [1, 2], petrochemical industries [3, 4], 
process industries [5, 6], manufacturing 
industries [7, 8], food and pharmaceutical 
industries [9-11], heating [12-14], cooling [15-

17], air conditioning [18-20], refineries [21, 
22], automotive industries [23, 24], etc. Also, 
they have many applications in equipment such 
as evaporators [25-27], boilers [28-30], cooling 
towers [31, 32], steam generators [33, 34], 
condensers [35], preheaters [36, 37], fan coils 
[38, 39], furnaces [40, 41], oil coolers and 
heaters [42-44], radiators [45, 46], etc. 

2.1. Classification of HEs 

As shown in Fig. 1, HEs are generally divided 
into two recuperative and regenerative 
categories, and each of these categories 
includes different aspects that are categorized 
as [47-52]: 

1. Based on recuperative/regenerative 
between hot and cold fluids. 

2. Based on the HT process (direct and 
indirect contact between hot and cold 
fluids). 

3. Based on the mechanical structure of the 
HE. 

4. Based on HT mechanisms between cold 
and hot fluid (single-phase and two-
phase flows). 

5. Based on the direction of cold and hot 
fluids. 

In the following, each aspect of the 
classification of HEs is fully explained. 

 

Fig. 1. Classification of HEs. 
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1) Based on regenerative/recuperative between 
hot and cold fluid 

Regenerative: The first regenerator heat 
exchanger was invented in 1816 by Rev. 
Robert Stirling [53]. In this type of HE, shown 
in Fig. 2 (a), the surface that separates the hot 
and cold fluid is not fixed so that some parts of 
the surface are alternately exposed to the hot or 
cold fluid [54-56]. This type of HE is 
commonly used in research scales [57, 58]. 

The regenerator heat exchanger is divided 
into two categories: 

1. Rotary regenerator heat exchangers: 
Rotary heat exchangers are a type of 
indirect and compact exchangers in 
which the flow of hot gas passes through 
the exchanger and its heat is transferred 
to the matrix. After a certain time (the 
hot cycle), the disk is rotated and when 
the cold current passes through the 
matrix, the heat stored in it is given to 

the cold flow. This matrix is located 
between two hot and cold flows. These 
tubes are separated by special surfaces 
that prevent the mixing of hot and cold 
streams. The flows of hot and cold gases 
pass through these tubes at the same 
time and their sensible energy is 
exchanged with the matrix [59]. The 
advantages of using rotary heat 
exchangers are as follows [47, 60, 61]: 

 High and cheap surfaces of heat 
transfer compared to other types 
of heat exchangers. 

 The self-cleaning property of 
matrices using the cross flows of 
hot and cold gases. 

 Low-pressure drop using the 
honeycomb structure of matrices. 

 Less consumption than 
recuperators. 

 

a 

 

b 

Fig. 2. (a) Regenerative and (b) Recuperative HE. 

 

Fig. 3. Rotary HE ((a)Axial flow and (b)Radial flow)[47] 
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2. fixed-bed regenerator heat exchangers: 
The fixed-matrix or fixed-bed 
regenerator is a periodic-flow heat 
transfer machine with a great thermal 
valence matrix through which the hot 
fluid flow and cold fluid flow transmit 
alternately [62, 63]. Specific parameters 
characterize regenerators' efficiency, i.e., 
mechanical and thermal properties of the 
solid matrix, geometry, working fluid 
properties as well as discharge and 
charge time-length periods [64, 65]. 

As shown in Fig. 4, at first matrix A is 
heated by hot fluid, and matrix B is cooled by 
cold fluid. behind a certain course of time, the 
valves operate so that the hot fluid flows 
through the formerly cooled matrix B and is 
cooled by heat transfer to it. The cold fluid 
similarly transmits through the previously 
heated matrix A, the cold fluid picks up heat 
from it to warm it up. 

Recuperative: In this type of HE, shown in 
Fig. 2 (b), hot and cold fluids are separated by 
a fixed (solid) surface and HT takes place 
through the solid surface. The solid surface, 
which is usually made of metal alloys, must 
have a high heat transfer coefficient (HTC) to 
increase the thermal efficiency of the HE. The 
most common heat exchangers are of 
recuperator type [66-69]. In recuperators, the 
flow of both fluids is present simultaneously 
and heat transfer is done continuously. Many 
HEs used in various industries are of this type 
[70-72].  

As shown in Fig. 1, recuperators can be 
classified based on the transfer process (direct 
and indirect contact between hot and cold 
fluid), which is discussed below. 

 
2) Based on the HT (direct and indirect contact 

between hot and cold fluid) 
As shown in Fig. 5(a), In Direct contact HEs, 
since there is no surface between hot and cold 
fluids, the fluids are in direct contact with each 
other, and HT takes place (Fig. 6). In direct 
contact HEs, fluid flows, a gas and a liquid, or 
two liquids are immiscible [73, 74]. These HEs 
usually have high thermal efficiency. Examples 
of these HEs are cooling towers, water coolers, 
and heaters in steam power plants [75, 76].  

Indirect HEs are used for indirect heating in 
the oil and gas industry. As shown in Fig. 5(b), 
In these exchangers, heat is transferred to the 
intermediate fluid through fire-fighting tubes. 
The presence of the intermediate fluid causes 
uniformity of heat distribution and prevents the 
formation of points with thermal concentration 
and high temperature. These HEs have much 
less risk than other ones. Indirect HEs have a 
much lower risk than direct HEs due to the 
indirect HT process and are considered a 
suitable option for use in a variety of hazardous 
environments with the possibility of explosion 
[77-80]. Examples of these HEs are plate HEs 
[11, 81, 82], tubular HEs [83, 84], spiral HEs 
[85, 86], and air-cooled HEs [31]. In Table 1, 
an example of indirect heat exchangers is 
collected.  

 

Fig. 4. fixed-bed regenerator HE. 
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(a) 

 

(b) 

Fig. 5. (a)Direct contact and (b)Indirect contact HE. 

Table 1. An example of indirect heat exchanger 

plate HEs 

 
Lamella 

 
Spiral 

 
Gasket 

tubular HEs 

 
Spiral pipe 

 
Double pipe 

 
Shell & tube 

Extended surface HEs 

 
Fin plate 

 
Fin tube 

Air-cooled HEs 
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3) Based on the mechanical structure of the HE 
 Tubes: As shown in Fig. 6(a), These 

HEs are made of tubes with a circular 
cross-section. One fluid flows inside the 
tubes and the other outside the tubes, 
and HT takes place through the tube 
wall. The diameter, number, length, 
pitch, and arrangement of tubes can 
vary. Therefore, there is considerable 
flexibility in their design[19, 87-93]. 

 Plates: As shown in Fig. 6(b), A plate 
HE consists of a set of parallel and 
corrugated plates that are placed side by 
side to form channels. Plates, usually 
made of stainless steel, are sealed by 
special rubber gaskets. The corrugation 
of the plates leads to flow turbulence 
even at very low velocities. As a result, 
the HTC relative to the smooth channel 
as well as the tube is increased 
significantly[73-76, 94-108]. 

 Extended surfaces: As shown in Fig. 
6(c), Extended surfaces with fins are 
surfaces that are widely used in heat 
transfer. When we want to transfer heat 
from a hot surface to a cold one, a larger 
cross-section can be used for the contact 
between the hot and cold surfaces by 
adding the fins [109-114]. 

4) Based on HT mechanisms between cold and 
hot fluid (single-phase and two-phase) 

As shown in Fig. 7, heat exchangers are 
classified into the following categories based 
on the mechanisms of heat transfer between 
cold and hot fluids: 

 Convection of one phase on both sides 
 Convection of one phase on one side, 

Convection of two phases on the other side 
 Convection of two phases on both sides 
In HEs such as air heaters in boilers, heaters 

used for room heating, car radiators, economizers 
(HEs in which the fluid moves from 
supersaturated to saturated liquid conditions), 
generators, inter-coolers in multi-stage 
compressors, oil coolers, etc., HT occurs through 

single-phase convection on hot and cold fluid 
sides. Boilers, condensers, and steam generators 
in pressurized water reactors in nuclear power 
plants, as well as evaporators and radiators used 
in air conditioning and heating, have condensing 
and evaporating mechanisms at one of the 
surfaces of HEs. Two-phase HT can also occur 
on both sides of the HE, for instance, when 
condensation occurs on one side and evaporation 
happens on the other side. However, a form of 
two-phase HT can take place without phase 
change. For example, fluidized substrates, gas 
mixtures, and solid particles transfer heat to or 
from the surface[115-121]. 
5) Based on the direction of cold and hot fluid 

flow 
HEs can be classified into the following 
categories based on the flow direction: 
 Parallel flow HEs 
As shown in Figure 8, In this type of HE, hot 
and cold flow are parallel to each other and the 
direction of hot and cold fluid flow is the same. 
Two fluids enter the HE on one side end, flow 
in one direction, and exit on the other side. The 
temperature of the cold fluid output from the 
HE never reaches the temperature of the hot 
output fluid. The close value of the two 
mentioned temperatures requires the use of a 
very large effective HT surface [122-126]. 

According to Fig. 8, hot fluid flows inside 
the tube and cold fluid flows in the shell. In 
this HE, hot and cold flows are parallel, i.e. 
both flows enter from part A and exit from part 
B. The cold fluid inside the shell is heated by a 
hot fluid. The above figure also shows the 
decrease in hot fluid temperature and the 
increase in cold fluid temperature. Inside the 
HE with the parallel flow, the temperature of 
the cold fluid is always lower than the 
temperature of the hot fluid in each section of 
the HE. There is the maximum temperature 
difference and consequently the highest HTat 
the input. There is also the minimum 
temperature difference and the minimum HT at 
the output [122-126]. 

 
Fig. 6. Classification of HEs based on their mechanical structure ((a)Tubes,(b) Plates, and (c)Extended surfaces). 
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Fig. 7. Classification of HEs based on HTmechanisms between hot and cold fluid ((a) single phase,(b) 
Evaporation, and (c) Condensation). 

 

Fig. 8. Parallel flow HE. 

 Counterflow HEs 
As shown in Fig. 9, When the flow of hot and 
cold fluids is parallel to each other and in 
opposite directions, the HE is called 
counterflow. It should be noted that in this type 
of HE, it is possible to enhance the output 
temperature of the cold fluid compared to that 
of the hot fluid. Under the same conditions, 
these HEs have a lower HT surface than their 
parallel flow ones[127-130]. 

According to Fig. 9, hot fluid flows inside 
the tube and cold fluid flows in the shell. In 
this, HE, hot and cold flows are countered. The 

cold fluid inside the shell is heated by a hot 
fluid. The above figure also shows the decrease 
in hot fluid temperature and the increase of 
cold fluid temperature. Inside the HE with the 
counter flow, the temperature of the cold fluid 
is always lower than the temperature of the hot 
fluid in each section of the HE. In counter-flow 
HEs, the temperature difference between hot 
and cold fluids is the same in almost every 
section. Therefore, the HT rate is almost the 
same in all parts of the HE [127-130]. 
 Crossflow HEs 
As shown in Fig. 10, In this type of HE, the  
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Fig. 9. Counterflow HE. 

 

Fig. 10. Crossflow HEs. 

directions of cold and hot flows are 
perpendicular to each other. The most common 
example is a car radiator. In a cross-flow 
arrangement, there is mixed or unmixed flow, 
depending on the design. The fluid inside the 
tubes is not mixed because it will not be 
allowed to move in the cross direction of the 
tube. The external fluid is mixed for finless 
tubes because the fluid can flow or mix 
transversely, and it is unmixed for finned tubes 
because the presence of the fins prevents it 
from flowing in a direction perpendicular to 
the main flow direction[127, 128]. 

As shown in Fig. 1, one of the most widely 
used types of HEs in the industry is the dual-
tube heat exchanger (DTHE), which is 
discussed in the following [48-50]. 

2.2.1. DTHE 

As shown in Fig. 11, The DTHE consists of 
two concentric and coaxial tubes with different 
diameters. One of the fluids flows inside the 
inner tube and the other fluid flows in the 
annular space between the two tubes along the 
tube length. The surface of the inner tube is 
responsible for heat exchange between the two 
fluids. The surface of  HT in the DTHE can be 
increased using different techniques[131, 132]. 

One of the most important factors in the 
design of dual-tube heat exchangers (DTHEs) 
is the type of flow pattern in the HE. As shown 
in Fig. 12, DTHEs can be designed as parallel 
and counterflow. It is noteworthy that the 
counter-flow pattern has the highest thermal 
efficiency and the highest HTC in the design of 
HEs[48, 133, 134]. 
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Fig. 11. DTHE. 

 

Fig. 12. Flow pattern in a DTHE ((a) Parallel flow double pipe heat exchanger and (b) Counter flow dual-tube 
heat exchanger). 

DTHEs are usually suitable for specific 
applications[48, 131-134]: 

- High-temperature changes are considered. 
- The flow rate of fluids is low. 
- Sufficient space is available for 

installation. 
- Low HT is required for high flow rates. 
The advantages of using a DTHE include: 
- Easy calculations and design 
- Easy fabrication 
- Relatively low cost 
- Easy maintenance 

- Simple flow control in two directions 
 It should also be noted that in industry, 

DTHEs are used for fluids that are usually 
sedimentary. 

3. Methods of enhancing heat transfer 

Increasing HT has been an effort of designers 
to reduce the size of heating equipment and 
reduce costs. The use of various methods to 
enhance HT has been studied for many years. 
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According to the classification of Kakac et 
al. [135] and Webb et al.[136], there are 
different methods for improving heat transfer, 
which is classified into three groups: 

- Active methods 
- Passive methods 
- Combined methods 

3.1. Active methods 

In the active method, an external force is 
required to increase heat transfer. Examples of 
this method are magnetic field, reciprocating 
pistons, the vibration of flow surface, use of 
electromagnetic fields (Table 2). 

Moghlany et al.[137] examined a DTHE 
with a rotating inner tube experimentally and 
evaluated the effect of hot and cold fluids, flow 
type, and the rotational velocity of the tube on 
the performance of the HE. The results showed 
that the HT rate and efficiency increase with 
the rotational velocity of the inner tube. In 
another study, Zhang et al. [138] examined the 
thermal properties of a simple tube connected 
to a rotor with different geometries. The results 
showed that the Nusselt number and friction 
coefficient increase significantly compared to a 
simple tube, and the performance of the HE is 
enhanced. 

3.2. Passive methods 

HT increases by creating turbulence in the flow 
or changing the flow regime without the need 
for an external force. This method is always 
associated with pressure drop. 

Geometric changes and multiple interior 
coatings play a major role in passive 
methods[139-142]. In recent years, researchers 
have conducted extensive investigations on 
passive methods such as twisted tapes[143-

145], extended surfaces [133, 146-149], wire 
loops[150-153], etc (Table 2). 

3.3. Combined methods 

In this method, both active and passive 
methods are used simultaneously to improve 
heat transfer[154]. Simultaneous use of coils 
and fluid vibration is one of the methods to 
enhance HT that has been considered by many 
scientists [155]. Omkar et al. [156] conducted 
an experimental study on a DTHE with an 
inner rotating tube when the outer surface of 
the outer tube contained a helical tube. They 
used water in the inner tube and glycerol in the 
ring between the two tubes. The results 
demonstrated the improvement of heat transfer. 

4. Nanofluid in DTHEs 

The prefix "nano" means one billionth or 10−9. 
So one nanometer is one billionth of a 
meter[157]. It is hard to imagine how tiny it is. 

As mentioned in Fig.13, here are some 
examples of nano comparison with other 
dimensions: 

 A sheet of paper is about 100,000 
nanometers thick. 

 The width of human hair is 
approximately 80,000 to 100,000 nm. 

 A single strand of human DNA is 2.5 nm 
in diameter. 

 The diameter of a gold atom is about a 
third of a nanometer. 

 There are 25,400,000 nanometers in an 
inch. 

 One nanometer is about as long as a 
fingernail grows in one second. 

 On a comparative scale, if the diameter 
of a marble was one nanometer, the 
diameter of the earth would be about one 
meter. 

Table 2. Methods of enhancing heat transfer. 

Active Passive Combined 
Injection Rough surfaces 

Simultaneous use of active 
and passive methods 

Suction Extended levels 
Fluid vibration Coated surfaces 

Mechanical equipment Rotary flow devices 
Electrostatic field Surface tensioning devices 

Using the jet 
Spiral tubes 

Add to liquids 
Add to gases 
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Fig. 13. Comparing nano with other dimensions[158]. 

One of the most effective factors to enhance 
thermal efficiency and HTcoefficient is to 
utilize one or more fluids with suitable thermal 
properties. Nanofluids have appropriate thermal 
properties to increase heat transfer. The term 
nanofluid was first used by Choi [159] in 1995 
by a research institute in the United States for a 
new type of fluid with solid suspended particles 
of 1 to 100 nm was used, which is compared to 
other dimensions in Fig. 13. 

Nanofluids are better thermal conductors 
than conventional fluids due to the size of the 
solid particles suspended in them. The main 
reason for choosing a nano-scale for the size of 
these particles compared to other particles is its 
greater stability, higher HT rate, and lower 
weight. Hence, the possibility of sedimentation 
of particles, wear, blockage, and pressure drop 
in the pipes is prevented due to low particle 
weight [160]. 

Nanofluids are produced by one-step and 
two-step methods (Fig. 14). In the single-step 
method, evaporation of nanoparticles and 
dispersion in the base fluid are all done in one 
step. In this method, the metal source is 
evaporated under vacuum conditions, and in the 
next step, nanofluid is produced by condensing 
the nano powder from the vapor phase in a low-
pressure fluid [161-164]. In the two-step 
method, first, nanoparticles are produced by one 
of the physical or chemical methods, and then in 
the next step, they are suspended in the fluid 
[165, 166]. In many nanofluids produced by the 
two-phase method, the aggregates of 
nanoparticles are not completely separated, 
which leads to the instability of the nanofluid 
[167]. To solve this problem and stabilize 
nanofluids, various methods are used, such as 
adding surface activators, changing the pH 
value of the suspension, and using ultrasonic 
vibrators[168, 169]. 

 

 

(a) 

 

 (b) 

Fig. 14. Nanofluid preparation ((a) one-step and,(b) two-step [170] methods). 
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Nanofluids have certain aspects that 
distinguish them from two-phase fluid 
compositions in which particles in millimeters 
or micrometers are used [170]. Researchers 
have shown that the most obvious effect of 
nanofluids is the tremendous increase in 
thermal conductivity [171-173]. Numerous 
studies have been performed by various 
researchers and it was shown that the use of 
nanofluids can be one of the most interesting 
techniques to increase HT in HEs [174-186]. 

In the following, the investigations carried 
out on DTHEs in which nanofluid is used are 
introduced. 

4.1. Investigations performed on nanofluids 
in DTHEs with smooth walls 

In an experimental study, Darzi et al. [187] 
investigated the effect of water/Al2O3 nanofluid 
on heat transfer, pressure drop, and thermal 
performance (TP) of a DTHE. They performed 
the experiments at 27 to 55 °C, with Res of 
5,000 to 20,000, and volume fraction of 
nanoparticles (φ) less than 1%. The results 
showed that the TP of the DTHE increases 
significantly with φ. Besides, the HT rate was 
intensified at high Res, and the friction 
coefficient was increased at low Res. Thus, it 
can be concluded that increasing φ leads to an 
enhancement in the Re. 

Duangthongsuk and Wongwises [188] 
investigated the forced convection HT of a 
water/TiO2 nanofluid In a two-tube HE. They 
measured the HT coefficient and friction 
coefficient in the turbulent flow regime. The 
results showed that the HTC of nanofluid 
increases by about 6 to 11% compared to the 
base fluid. On the other hand, the HTC 
increases with the velocity of hot water and 
nanofluid. Also, decreasing the nanofluid 
temperature and increasing the hot water 
temperature does not have a significant effect 
on the HTC. Finally, they revealed that a 
significant increase in thermal conductivity and 

pressure drop occur by adding nanoparticles to 
the base fluid in a DTHE at different Res, 
resulting in an improvement in the 
performance of the HE. 

Chun et al. [189] examined the HTC of 
alumina-oil nanofluid in a DTHE in a laminar 
flow regime experimentally. They observed 
that although the thermal conductivity of 
alumina is not high, it is much higher than the 
base fluid, and the addition of alumina 
nanoparticles to the base fluid leads to a 
significant increase in the HTC. They also 
attributed the enhancement in HT coefficient is 
due to the high concentration of nanoparticles 
in the thermal boundary layer near the wall of 
the DTHE. 

Aghayari et al. [190] evaluated the TP of 
water/Al2O3 nanofluid in a DTHE. In their 
experiments, they used nanoparticles with a 
diameter of about 20 nm and φ = 0.1 to 0.3% in 
a turbulent flow regime. They examined the 
effect of temperature, Re, and φ on TP. The 
results demonstrated that the use of nanofluid 
enhances the HTcoefficient by at least about 
12% compared to the base fluid. 

Khedkar et al. [191] assessed the HTC of 
TiO2-water nanofluid as a coolant in a DTHE. 
In this experiment, an internal copper tube with 
a length of 1000 mm was employed. The 
results showed that the TP is significantly 
increased (about 14%) by adding nanoparticles 
to the base fluid. 

Akhtari et al. [192] examined the TP of 
Al2O3/water nanofluid in a DTHE under a 
laminar flow regime. They investigated the 
effect of parameters such as nanofluid 
temperature, φ, as well as hot and cold flow 
rate on TP. The results demonstrated that TP 
increases by enhancing the rate of hot and cold 
flow, φ, and nanofluid temperature. They 
showed that by adding nanoparticles to the 
base fluid, the HTC is improved by 13.2%. 

Table 3 presents the studies performed on 
the TP of nanofluids in DTHEs. 
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Table 3. Studies performed on the TP of nanofluids in DTHEs. 

Results Characteristics Nanofluid Ref. 

By increasing  φ or by increasing the Re, the 
Nusselt number enhances by 32.7%, and the 
convection HTC is improved by 30%. 

 DTHE with counterflow 
 Nanofluid, internal fluid (hot fluid with a 

temperature of 350 K) 
 Water, external fluid (cold fluid with a 

temperature of 285 K) 
 Turbulent flow regime 

Al2O3 – 
water 

Bahmani et 
al. [193] 

2018 

As φ and the Re increase, the overall 
HTcoefficient and HT rate enhance. Also, the 
pumping power increases with the Re and 
decreases with φ. On the other hand, the HTto 
pressure drop ratio is enhanced with φ. 
Therefore, the nanofluid exhibits a higher TP at 
values of φ. 

 DTHE with counterflow 
 Nanofluid, internal fluid (cold fluid, 298 K) 
 Water, external fluid (hot fluid, 360-308 K) 
 φ = 0.1 to 1% 
 Laminar flow regime (500-2000) 

Ag-
Eg/water 
(50/50) 

Bahireie et 
al. [194] 

2017 

As the temperature and φ increase, the 
convection HTC increases significantly 
compared to the base fluid. 

 DTHE 
 Al2O3 volume fraction: 0.1, 0.5 and 1% 
 Cu volume fraction: 0.1, 0.3, 0.5, 0.7 and 1% 
 Turbulent flow 

Al2O3-Eg 
 

Cu-Eg 

Zamzamian 
et al. [195] 

2011 

The presence of nanoparticles in the base fluid 
offers a high potential for heat transfer. As  φ 
increases, the Nusselt number increases at a 
constant Re. As the Re increases, the Nusselt 
number enhances, and ultimately the TP 
improves. 

 DTHE 
 Re: 7000-15000 
 φ : 0.26 to 0.83% 

Al2O3- 
water 

 

Cu- water 

Jassim et al. 
[196] 
2020 

By adding nanoparticles to the base fluid, the 
overall performance of the HE is enhanced 
dramatically. The maximum Nusselt number of 
14.7 is obtained for φ = 0.06% and Re of 30,000. 

 DTHE 
 Turbulent flow regime (15000-30000) 
 φ : 0.005, 0.01, 0.03 and 0.06% 

Fe3O4-
water 

Kumar [197] 
2017 

Applying a uniform transverse magnetic field 
creates a Kelvin force in the direction 
perpendicular to the ferrofluid flow. This 
penetrates the cold boundary layer into the hot 
ferrofluid and ultimately leads to an increase in 
the Nusselt number and improves the HT of the 
ferrofluid (the application of a magnetic field 
increases the Nusselt number by about 45%). 

 DTHE with counterflow 
 Uniform transverse magnetic field 
 Laminar flow regime 
 Nanofluid, inner fluid (hot) 
 Air, external fluid (cold) 

Fe3o4-water 
(4%) 

Shakiba et al. 
[198] 
2016 

The addition of nanoparticles to the base fluid 
leads to the HTcoefficient increasing 
dramatically so that for φ = 1%, the 
HTcoefficient increases by about 67%. 

 DTHE 
 Laminar-transient-turbulent flow regime 
 φ : 0.1, 0.5 and 1% 

Ag/ 
Eg-water 
(50/50) 

Sarafraz and 
Hormozi 

[199] 
2015 

The average HT rate for the nanofluid as a 
coolant is higher than the base fluid so the HT 
rate increases as φ increases. 

 DTHE 
 Laminar-transient-turbulent flow regime 
 φ : 2 and 3% 

Al2O3 – 
water 

Sonawane et 
al. [200] 

2013 

The addition of nanoparticles to the base fluid 
leads to an increase in the overall HTcoefficient 
so that the HTcoefficient increases by 18.25% 
with the addition of Al2O3 nanoparticles and by 
15.5% with the addition of TiO2 nanoparticles. 

 DTHE 
 Laminar flow regime 
 φ : 0.05 to 0.3% 
 Flow rate: 0.5 to 2 lit/min 
 Hot water, inner tube 
 Nanofluid, outer tube (cold) 

Al2O3 – 
water 

 

TiO2 -  
water 

Hassan et al. 
[201] 
2014 

The addition of nanoparticles to the water leads 
to a significant increase in thermal conductivity 
and pressure drop and improves the performance 
of the HE. 

 DTHE 
 Turbulent flow regime 
 φ : 1 to 3% 

Cu - water 
El-Maghlany 
et al. [202] 

2016 

Increasing φ, particle size and magnetic field size 
leads to an enhancement in pressure drop and 
improvement in heat transfer. At higher Res, the 
effect of magnetic force decreases. 

 DTHE with counterflow 
 Euler-Lagrange two-phase method 
 Presence of magnetic field 
 Nanofluid as a coolant, inner tube 
 Hot water, outer tube 

Zn-

Mn/water 

Bahiraei and 
Hangi [203] 

2013 

Compared to the base fluid, the overall 
HTcoefficient increases and then decreases with 

 DTHE with counterflow 
 φ : 0.001 to 0.01% 

Al2O3 – 
water 

Chavda et al. 
[204] 



82 Hamed Eshgarf et al. / Energy Equip. Sys. / Vol. 11/No. 1/March 2023 

φ to 0.008%. 2014 
The addition of nanoparticles can increase the 
thermal properties of the fluid by up to 20% and 
increase the overall HT rate. 

 DTHE 
 Turbulent flow regime (5000-30000) 
 φ : 1 to 4% 

Al2O3 – 
water 

Azeez et al. 
[205] 
2020 

The addition of nanoparticles to the base fluid 
increases the HT in the best conditions by up to 
16%. The TP coefficient of the nanofluid can 
reach 1.11%. This value is obtained for φ = 
0.15% and Re of 18000. 

 DTHE 
 Turbulent flow regime (18000-40000) 
 φ : 0.05 to 0.15% 
 Nanofluid inlet temperature: 45 to 65 ° C 

Al2O3 – 
water 

Raei [206] 
2019 

The  HTC of the HE increases by 27% for φ = 
0.3% compared to the base fluid. The presence of 
nanoparticles enhances the pressure drop by 
0.35% for φ = 0.3%. 

 DTHE with counterflow 
 Laminar-transient-turbulent flow regime 
 φ: 0.1, 0.2, 0.3% 

MgO-Eg 
Arya et al. 

[207] 
2019 

As the Re and φ enhance, the Nusselt number 
increases. For all values of φ, the Nusselt number 
is greater than the Nusselt number of the base 
fluid. To compensate for the pressure drop at 
high Res, more power is needed, so the use of 
nanofluids at high Res has fewer advantages and 
applications compared to nanofluids at low Res. 

 DTHE with counterflow 
 Turbulent flow regime (8000-51000) 
 Φ: 0.002 to 0.02% 

TiO2-water 
Arani and 

Amani [208] 
2012 

HTC and coefficient of friction increased by 
10.2% and 8.73% in φ by 0.02%, respectively, 
compared to the base fluid. 

 DTHE 
 Turbulent flow regime (4000-15000) 
 Φ: 0.0004 to 0.02% 

TiO2-
Eg/water 

Reddy [209] 
2014 

The  HTC, Nusselt number, and total 
HTcoefficient are increased by 52%, 49%, and 
68%, respectively, for φ up to 1%. On the other 
hand, for φ = 1% to 2%, the  HTC and Nusselt 
number are increased significantly. In general, 
for all values of φ, the total  HTC is increased. 

 DTHE with counterflow 
 Turbulent flow regime 
 φ : 0.1 to 2% 

Cu/TiO2-
water 

Madhesh et 
al. [210] 

2014 

HT enhances dramatically with the temperature 
and φ. Also, by increasing the inlet temperature, 
HT and Nusselt number are increased. 

 DTHE with counterflow 
 Turbulent flow regime (20000-60000) 
 φ : 0.25 and 0.5% 

Al2O3 – 
water 

Han et al. 
[211] 
2017 

HTC and Nusselt number are enhanced 
significantly up to 19% and 24%, respectively. 
Also, increasing temperature and φ have an 
important effect on the  HTC. 

 DTHE with counterflow 
 Turbulent flow regime 
 φ : 0.1 to 0.3% 

Al2O3 – 
water 

Aghayari 
[212] 
2014 

The Nusselt number increases for all dimensions 
and volumetric fractions relative to the base fluid. 
On the other hand, by reducing the diameter of 
nanoparticles, the Nusselt number does not 
increase in general. For φ and Re range of the 
study, nanofluids with a nanoparticle diameter of 
20 nm have the highest coefficient of TP. 

 DTHE with counterflow 
 Turbulent flow regime 
 φ : 0.01 to 0.02% 
 Nanoparticles with diameters of 10, 20, 30, 

50 nanometers 

TiO2-water 
Arani and 

Amani [213] 
2013 

The  HTC increases with φ and Re. The 
percentage increase of Nusselt number is 
15.72%, the friction coefficient is 11.51% and 
the TP is 11.57% when φ is 3% and the flow rate 
is 1.6 lit/min. 

 DTHE with counterflow 
 Turbulent flow regime (3019.43-4824.22) 
 φ : 0.1, 1 and 3% 

SiO2-water 
Kassim et al. 

[214] 
2019 

With increasing Re and φ of Fe3O4 and Cnt 
nanoparticles, the overall HTcoefficient 
enhances. To achieve maximum heat transfer, a 
high φ should be used along with low values of 
Re. 

 DTHE with counterflow 
 Laminar flow regime 
 Under the influence of magnetic field 

Fe3O4/ Cnt-
water 

Shahsavar et 
al. [215] 

2017 

The use of an external magnetic field increases 
HT by up to 320% (with a slight increase in 
pressure drop). The best conditions for the HE 
operation are low Re, high magnetic field 
strength, and high φ. 

 DTHE with counterflow 
 Laminar flow regime 
 Under the influence of magnetic field 

Fe3O4-
water 

Bezaatpour 
and 

Goharkkhah 
[216] 
2020 
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According to the investigations carried out 
on nanofluids in DTHEs with smooth walls, it 
can be concluded that: 

• The use of dual-tube smooth HEs with 
the counter flow is more appropriate at 
high Res. 

• Surface properties of nanoparticles, φ, 
and the shape of nanoparticles are the 
most important parameters for 
increasing HT in a DTHE. 

• The thickness of the thermal boundary 
layer and the thermal conductivity of the 
nanofluid has a significant effect on the 
HTC. 

• As φ and Re increase, the HT rate and 
overall HTcoefficient are enhanced 
dramatically. 

• By adding tape inside the tube, the HTC 
of the nanofluid increases dramatically. 

• The use of coil inserts inside smooth 
DTHEs is useful for improving HT and 
at the same time causing a pressure drop. 

• Nanofluid has no limitations in terms of 
pumping power and can be suitable for 
practical applications. 

• The use of nanofluids can improve the 
TP and efficiency of HEs. 

• By applying a non-uniform magnetic 
field, the ferrofluid flow can be 

controlled and the HT process is 
improved. 

• By increasing the amount of heat 
transferred to the cold fluid, the 
performance of the DTHE is improved. 

• The use of nanofluids can change the 
rate of transition of the flow regime from 
laminar to transient and transient to 
turbulent. 

• As φ and Re are enhanced, the average 
Nusselt number increases. 

• The HT rate of nanofluids is higher than 
that of the base fluid and this rate 
enhances with φ. 

Review literature demonstrates that studies 
on DTHEs depend on the type of nanofluid 
used and as a result, the results obtained cannot 
be generalized to all nanofluids. 

According to Fig. 15, it can be observed 
that in addition to the impact of the type of 
nanofluid used in the HE performance, 
experimental conditions, including laminar or 
turbulent, φ, the size of nanoparticles have a 
very significant effect on the performance of 
the HE. It is also shown in Fig. 15 that silver 
nanoparticles have the greatest effect on TP. 

 

 

Fig. 15. Comparison of TP of some nanofluids used in DTHEs.  
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6. Conclusions 

The present review evaluates the TP of DTHEs 
in the presence of nanofluids. Since DTHEs are 
widely used in industrial and engineering 
processes, and on the other hand, due to the 
appropriate and desirable properties of 
nanofluids (an extraordinary increase in 
thermal conductivity) compared to other fluids, 
many investigations have been done 
considering the use of nanofluids in HEs. Most 
studies have shown that the use of nanofluids 
in DTHEs significantly improves the HT rate 
compared to other fluids. By enhancing φ and 
Re, the Nusselt number increases, leading to an 
improvement in HT and the performance of 
DTHEs. The following research challenges can 
be expressed from this review: 

• The advantages of using nanofluids in 
HEs with different thermophysical 
properties depend on the working 
conditions, the type, and the geometric 
shape of other heat exchange equipment. 
Nanofluids can have different results in 
different conditions. 

• Since nanofluids sediment if they lose 
their stability, the TP of the HE is 
affected significantly. A few researches 
have been done in this field and 
therefore more research are required to 
develop appropriate design strategies.  

• The development and presentation of 
accurate correlations that can predict the 
pressure drop and HTC of nanofluids in 
HEs is very effective. Therefore, due to 
the increase in economic considerations 
in designing and presenting new 
methods in mathematical computing, it 
is necessary to provide appropriate 
analytical correlations. 

• According to the studies conducted in 
this review article, it is observed that 
there is a major problem to use 
nanofluids in HEs, which is the lack of 
standardization among various studies 
and evaluations. It can be seen that it is 
difficult to compare different published 
articles due to extensive changes in data 
analysis and interpretation and the lack 
of standard approaches. As a 
recommendation, the existence of 

extensive communication between 
researchers can help the rapid growth of 
this technology. 

• Synthesis and stability of nanoparticles 
and nanofluids are among the factors 
influencing the experiments. Therefore, 
in addition to considering the 
performance of nanofluids, the costs 
required to prepare nanofluids must also 
be considered. 

• Future studies on nanofluids and the 
performance of HEs containing nanofluids 
should be more comprehensive. Because 
the results demonstrate that factors such as 
morphological shape, preparation 
techniques, type of nanoparticles, and 
surfactants have a significant impact on 
the measurement of variables. Therefore, 
if these factors are ignored, their effect is 
significant in the results and the correct 
results are not obtained. Hence, it is 
recommended to avoid simplifying 
assumptions as much as possible and to 
carefully examine and measure all factors. 
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