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ABSTRACT    

Biomass gasification is the process of converting biomass into a 
combustible gas suitable for use in boilers, engines, and turbines to produce 
combined cooling, heat, and power. This paper presents a detailed model of 
a biomass gasification system and designs a multigeneration energy system 
that uses the biomass gasification process for generating combined cooling, 
heat, and electricity. Energy and exergy analyses are first applied to 
evaluate the performance of the designed system. Next, the minimizing total 
cost rate and the maximizing exergy efficiency of the system are considered 
as two objective functions and a multiobjective optimization approach 
based on the differential evolution algorithm and the local unimodal 
sampling technique is developed to calculate the optimal values of the 
multigeneration system parameters. A parametric study is then carried out 
and the Pareto front curve is used to determine the trend of objective 
functions and assess the performance of the system. Furthermore, 
sensitivity analysis is employed to evaluate the effects of the design 
parameters on the objective functions. Simulation results are compared 
with two other multiobjective optimization algorithms and the effectiveness 
of the proposed method is verified by using various key performance 
indicators. 
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1. Introduction 

Biomass is an alternative energy source which, 
unlike a fossil fuel, is carbon-neutral, widely 
available, and helps reduce waste and global 
warming. Since biomass is a renewable energy 
resource and is environment-friendly, it can be 
used to replace or reduce dependency on fossil 
fuels [1]. Hence, hybrid energy systems based 
on renewable energies, such as biomass for 
multigeneration purposes, are important for 
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effective energy production and environment 
protection.  

Biomass-based energy systems have been 
studied over many years by numerous researchers 
for various industrial applications. Recently, a 
number of studies have focused on biomass-based 
trigeneration and multigeneration systems.  

Authors in [2] have designed a 
multigeneration system that is fuelled by gasified 
biomass and natural gas. They concluded that 
renewable energy is the source for reducing CO2 
and environmental impact. Performance 
assessment and the optimization of an integrated 
biomass energy system for multigeneration 
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purposes have been conducted in [3], in which 
results have shown that the energy and the 
exergy efficiencies of the overall system are 
higher than the efficiencies of the individual 
biomass system. Energy and exergy analyses of 
a biomass based multigeneration system using an 
organic Rankine cycle (ORC) has been 
performed in [4], in which simulation results 
have shown that the maximum exergy efficiency 
of the ORC increases from 13 percent to 28 
percent from a single generation to 
multigeneration. Authors in [5] have developed 
thermodynamic, energy, and exergy analyses on 
a biomass-based integrated system, in which 
they have investigated the effects of the design 
parameters on system operation. The simulation 
results reported in [5] illustrate that increasing 
the operation temperature of fuel cells cause 
more exergy destruction of the system in the fuel 
cell and the combustion chamber. Authors in [6] 
have developed energy and exergy of a 
combined cooling, heat and power (CCHP) 
system based on solar energy and biomass. The 
simulation results for the system used in [6], 
which includes the absorption chiller, heater, 
desalination system, biomass burner, and solar 
collector, show that the energy and the exergy 
efficiency are 61 and 7 percent, respectively. 
Reference [7] has presented an integrated system 
based on biomass energy, in which the effects of 
the various system parameters on energy and 
exergy efficiencies have been examined. The 
simulation results presented in [7] show that the 
energy and the exergy efficiencies are 66.5 and 
39.7 percent, respectively. Authors in [8] have 
proposed an optimization model for biomass 
gasification based Building Combined Cooling, 
Heating and Power (BCHP) system. They have 
also calculated the most optimal scheme in terms 
of cost, energy consumption, steel consumption, 
and carbon dioxide emission. Authors in [9] 
have focused on modeling, simulation, and the 
economic analysis of the small-scale biomass 
CCHP system. The results presented in [9] show 
that the maximum efficiency and the best 
electricity price for the proposed system are as 
85 percent and £87 / MWH, respectively. A 
CCHP system that includes a biomass gasifier, a 
double effect absorption refrigeration cycle, a 
HRSG, and a solid oxide fuel cell has been 
designed in [10] and its performance has been 
and compared with a CHP system. Authors of 
[10] have shown, using exergy and energy 
analysis, that the maximum exergy efficiency 
and CO2 emission of the CCHP system are, 
respectively, significantly higher and lower than 

the same parameters of the CHP system. The 
results of the studies presented in [11] for a 
system that consists of three subsystems, i.e., a 
biomass gasification plant, a hydrogen 
liquefaction unit, and a solid oxide fuel cell/gas 
turbine (SOFC/GT), has shown that the 
SOFC/GT system provides considerably higher 
exergy efficiency in comparison to propulsion 
systems. Authors of [12] have studied the energy 
and exergy analysis of an integrated coal-based 
gasification system for hydrogen production and 
electric power generation, in which they have 
concluded that the energy and exergy 
efficiencies are 41 and 36.5 percent, 
respectively. A hybrid energy system for 
hydrogen production and electric power 
generation has been modeled in [13]. The model 
includes a photo voltaic array, wind turbines, an 
electrolyzer, a polymer electrolyte membrane 
fuel cell, a hydrogen tank, and a converter. The 
energy and the exergy analysis of the hybrid 
system have shown that the average energy and 
exergy efficiencies of the PV array are 13.31 and 
14.26 percent, respectively; for the electrolyzer 
equipment, on the other hand, the average energy 
and exergy efficiencies are 59.68 and 60.26 
percent; for the wind turbine, these values are 46 
and 50.12 percent. The energy analysis of a 
solar-based biomass gasification system for 
hydrogen production has been presented in [14], 
in which three gasification processes have been 
studied. In the first gasification process, a 
gasification reactor has been selected along with 
a conventional water gas shift section and a 
pressure swing absorber. In the second 
gasification process, a gasification reactor, 
followed by an integrated membrane water gas 
shift reactor has been considered. In the third 
gasification process, a supercritical gasification 
reactor, followed by two flash separators and a 
pressure swing absorber have been selected. The 
results of the conducted simulations have shown 
that the optimal solar share of the second process 
is higher than the optimal solar share of the first 
process. Moreover, solar integration was not 
possible in the third process. Authors of [15] 
have presented exergy, energy, and the 
exergoeconomic analysis of a biomass-based 
hydrogen production system. Their analysis has 
shown that on the basis of the parameters used in 
their study, the cost of hydrogen produced by the 
circulating fluidized bed gasifier system is in the 
range of $1.59/kg to $5.37/kg. An energy 
production system that consists of biomass 
gasification as well as a fuel cell system has been 
studied in [16], in which the energy and exergy 
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analysis have shown that the effect of the steam 
biomass ratio on the hydrogen production 
efficiency is significant. A solar thermal system 
has been used in [17] as an energy source to 
supply the electrolyzer of the coupled hydrogen 
and solar energy system, in which a detailed 
model of the fuel cell and the thermal solar 
system have been studied. A multigeneration 
system that consists of geothermal and solar for 
generating electrical power, cooling, heating, 
hydrogen, and hot water for buildings has been 
presented in [18], in which energy and exergy 
analysis have been shown according to the 
internal parameters used in the study. The net 
cost of the optimized system is $476,000 and the 
levelized cost of electricity is $0.089/kWh. 

The energy and exergy analysis of a 
geothermal power-based multigeneration 
energy production system conducted in [19] has 
shown that while geothermal water temperature 
rises, electrical power generation as well as the 
hydrogen production increase, but the hydrogen 
production cost decreases. 

Reference [20] has developed a model for 
the designing, optimizing, and simulation of an 
energy system based on biomass gasification, 
which includes five configurations for power, 
heating, and cooling production. The results 
presented in [21] show that the exergy 
efficiency of the system is in the range of 18.9 
to 23.2 percent. Energy and exergy analysis of a 
biomass-based energy system, which includes 
cooling, heating, and power cogeneration, has 
been presented in [22]. Energy, exergy, and 
economic analyses of the system show that the 
exergy efficiency is 28 percent, and the total 
destructed exergy of the biomass burner and the 
ORC evaporator are 55 and 38 percent, 
respectively.  

Multigeneration systems based on renewable 
energies, such as biomass, potentially provide 
numerous benefits, such as higher efficiencies, 
reduced greenhouse gas emissions, reduced 
operating costs, and better use of resources. 
However, there are many design parameters that 
have significant effects on system performance, 
ranging from economic, thermodynamic, and 
environmental aspects. Hence, from the 
engineering application point of view, it is 
necessary apply optimization techniques to find 
the best values for the design parameters in order 
to improve system performance. The optimization 
process of a multigeneration energy system with 
many design parameters is a complicated and 
challenging task. Hence, the use of an efficient 

and global optimization algorithm is essential for 
the optimal design of such systems. 

The employed methods for the optimization 
of multigeneration systems are generally 
categorized into classical methods and intelligent 
optimization algorithms. Classical optimization 
techniques cannot guarantee convergence with 
the global optimal solution when there are many 
design parameters [23]. In addition, according to 
the results presented in the literature, in complex 
and nonlinear optimization problems, such as 
multigeneration energy systems, intelligent 
optimization algorithms are superior to classical 
methods in finding the optimal solution [24]. As 
a result, in the field of multigeneration energy 
systems, certain researchers used evolutionary 
algorithms, such as the genetic algorithm and the 
particle swarm optimization technique [25–26] 
to find the optimum values for design 
parameters. 

Single-objective optimization is not suitable 
for evaluating the performance of a 
multigeneration system because there are many 
factors that impact its performance from 
economic, thermodynamic, and environmental 
aspects. For example, in [27], for a 
multigeneration system, it has been shown that 
there is not an optimal condition where all the 
objective functions can reach their optimum 
values. For maximizing thermal efficiency and 
simultaneously minimizing the total cost rate of 
a multigeneration system, the elitist NSGA-II 
has been used in [3, 4]. A two-stage optimal 
design method, which uses the nondominated 
sorting genetic algorithm (NSGA-II) in the first 
stage and mixed-integer linear programming 
algorithm in the second stage, has been used for 
a CCHP system in [28]. A multiobjective PSO, 
called MOPSO, is used in [29] to obtain the 
maximum actual annual benefit and exergy 
efficiency of a trigeneration system. A 
multiobjective function, based on 
thermodynamic, economic, and environmental 
aspects, has been selected in [30] and a 
MOPSO algorithm has been used to optimize a 
CCHP system. Although a literature review 
shows that evolutionary algorithms, especially 
GA and PSO algorithms, provide quite good 
results in the field of multigeneration system 
optimization in order to fill the existing gap in 
the multiobjective optimization of a biomass 
gasifier-based multigeneration system and also 
increase the variety of available tools, other 
alternatives of optimization techniques shall 
also be taken into consideration. 
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This paper presents a detailed model of a 
biomass gasification system, designs a 
multigeneration system, and determines the best 
operating condition using multiobjective 
optimization techniques. Major highlights of 
this study are as follows: 

 To model a multigeneration system 
consisting of a biomass combustor, an 
ORC, a double-effect absorption chiller, 
and a desalination unit. 

 To perform exergy and exergoeconomic 
analyses of this multigeneration system. 

 To propose and apply a new multiobjective 
optimization algorithm based on 
differential evolution (DE) and the local 
unimodal sampling (LUS) technique. 

 To derive a closed-form expression for the 
Pareto optimal points curve to provide aid 
for the optimal design of the 
multigeneration system. 

 To perform sensitivity analyses to evaluate 
the effects of the design parameters on the 
objective functions. 

 To select the final optimum design point by 
using a fuzzy clustering-based decision-
making method. 

 To compare the performance of the 
proposed multiobjective optimization 
algorithm with other well-known 
intelligent optimization methods. 

 To compare the comprehensive 
thermodynamic modeling, exergy analyses, 
and the environmental impact assessments 
of the system under study with other 
multigeneration systems.  

The rest of this paper is organized as 
follows: The multigeneration energy system 
along with its thermodynamic modeling and 
analysis are described in Section 2. Exergy, 
energy, and economic analysis of the system are 
presented in Sections 3 and 4. Section 5 
presents the proposed multiobjective 
optimization technique. The simulation results 
and the effects of the design parameters on the 
system performance analysis are shown in the 
Sections 6 and 7, respectively. The conclusions 
are provided in Section 8. 
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Fig. 1. Schematic diagram of the multigeneration system based on biomass gasification. 
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2. Assumption and system description 

Figure 1 shows the schematic diagram of a 
biomass gasification-based multigeneration 
system. Such a system, which comprises a 
biomass fired hot air gas turbine, can be used 
when there is a simultaneous demand for 
electricity, heating, cooling, fresh water, and 
hot water. In this system, the synthesis gas 
produced via biomass gasification mixes with 
air in a combustion chamber and produces 
combustion products at 1450 K. Hot flue gas, 
after leaving the biomass combustion chamber, 
enters a cyclone to remove ash and then enters 
an ORC evaporator to produce steam. The 
steam is then used to derive the ORC turbine 
and generate electricity. The electricity is used 
to supply the power system and also derive RO 
desalination plant to produce fresh water. As 
the hot flue gas leaving the evaporator still has 
enough energy, it can be used in the water 
heater for producing hot water. Some of the hot 
flue gas that leaves the ORC evaporator is used 
to run the absorption chiller.  

3. Thermodynamic modeling and analysis 

For thermodynamic modeling, the 
multigeneration energy system that is described in 
Fig. 1 is divided into the following four 
subsystems: 1) biomass combustor, 2) ORC and 
domestic water heater, 3) absorption chiller, and 
4) reverse osmosis desalination unit. The relevant 

energy equations of the system, shown in Fig. 1, 

are described in the following sections. 

3.1. Biomass combustion  

Biomass enters the combustor at Point 2 and air 
enters at Point 1. The gasification of biomass 
can be presented by the following reaction [3]: 

 2 2 2

2 2 2

3.76   

 

x y zC H O H O O N

aCO bH O cN

 
 (1) 

, where 𝜔 is the amount of water in biomass 
that is obtained from the equation below: 

 18 1

biomassm MC

MC






 

(2) 

The molar mass flow rate of biomass can be 
expressed as follows: 

x y z

x y z

biomass

C H O

C H O

m
n

M


 
(3) 

(a, b, c, and 𝜆) in the right hand side of Eq.(1) 
are calculated by the mass balance of carbon, 
hydrogen, and oxygen as shown below:  

2 79 2
 ,   ,  , 

2 21 2

y a b z
a x b c

 
 

   
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(4) 

To find the chemical exergy at the inlet and 
the outlet of the combustion chamber, the 
following equation is obtained by writing the 
first law of thermodynamic for this process and 
ignoring the changes in potential energy and 
kinetic energy [4] as follows: 

2 2 2

2 2 2

3.76   

 

x y zC H O H O O N

CO H O N

h h h h

ah bh ch

  
 (5) 

2 22x y z x y z
biomassC H O CO H O C H O

y
h xh h LHV M

 
   

   
(6) 

The LHV biomass byproduct that is 
unknown here can be found by using the 
following equations [26, 27]: 

226.04 25.82biomass biomassLHV HHV y     (7) 

338.3 1443 94.2
8

biomass

z
HHV x y 

 
    

   
(8) 

Input energy to the system is defined as 
below: 

  4

1000

 
  
 
 

x y z x y zC H O C H O

biomassbiomass

CHfuel

n M
Q LHV

m LHV

 (9) 

3.2. Organic rankine cycle 

The ORC is normally used for recovering 
energy from low-grade heat. As shown in Fig. 
1, gases produced from the combustion of 
synthesis gas enter the evaporator and operate 
the ORC system. Applying thermodynamic law 
on each component will result in the following 
equation [31]. The equations describing the 
behavior of different parts of the ORC are 
shown as follows:  

i i o oQ m h W m h     
(10) 

Evaporator: 

The energy balance equation for the evaporator 
is shown below.  
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4 4 7 7 8 8 6 6m h m h m h m h    (11) 

Since, pinch point temperature is an important 
parameter to calculate the gas temperature leaving 
the evaporator, the following equation is used to 
define pinch point temperature: 

, 8 7Pinch EvapT T T 
 (12) 

Turbine: 

Energy balance for the ORC turbine yields the 
following relation [19]: 

,

,

Turbin act

Turbin

Turbin isen

W

W
 

 
(13) 

Energy balance for the control volume around 
the pump is described below [16] as follows: 

 pump in out inW m h h 
 (14) 

The energy balance for control volume 
around the condenser is expressed as follows: 

9 9 10 10condm h Q m h   (15) 

 , ,cond cooling cooling out cooling inQ m h h 
 

(16) 

3.3. Model of water heater 

Hot air that leaves the evaporator enters the 
water heater. Energy balance for the water 
heater will result in the following equation: 

   , , ,in p g in out w w in w outm C T T m h h  
 

(17) 

3.4. Model of the RO desalination unit 

The main components of an RO system include 
a high pressure pump, membrane separation 
units, and an energy recuperation system. In 
this paper, a standard RO unit with the 
following mass and energy-balancing equation 
is used [5]: 

 net n pump turbinW b W W 
 

(18) 

where 𝑏𝑛 is the number of trains, which is 7 in 
this study. �̇�𝑝𝑢𝑚𝑝 and �̇�𝑡𝑢𝑟𝑏𝑖𝑛, which are work 
rate interaction of the RO pump and the hydro 
turbine, are defined as follows [6]: 

Fw turbin

Turbin

Fw

Pm
W








 
(19) 

BW

pump

pump BW

Pm
W

 




 
(20) 

In the above equations, ∆𝑃 is the trans-
membrane pressure, and  𝜂𝑝𝑢𝑚𝑝 and 𝜂𝑡𝑢𝑟𝑏𝑖𝑛 
 are the efficiencies of the RO pump and the 
hydro turbine, respectively. The rate of fresh 
water flow �̇�𝐹𝑊 is related to the rate of brain 
water, which is defined as follows [6]: 

BW

FW

m
m

RR


 
(21) 

The equation of the trans-membrane is 
shown as follows: 

 ,w mP J k     (22) 

here, 𝑘𝑚 is the membrane permeability 
resistance and 𝐽𝑤 is the volumetric permeate 
flow rate as shown below: 

2
11FW , 8.03 10w m

FW

m m s
J k

nA kgPa

  

 
(23) 

In the above equation, 𝑛 is the total number 
of membranes, 𝜌𝐹𝑊 is density of fresh water, 
and 𝐴 is the membrane area. ∆𝜋, which is the 
osmotic pressure of the trans-membrane, is 
defined below [5]. 

5 805.1 10  WC R    (24) 

CW, which is the membrane wall concentration, 
is expressed as follows: 

 

W

W

12

1

J

k

W J

k

e x
C

e R R

 
 
 

 
 
 



 
 

(25) 

where 𝑅 is the membrane rejection coefficient 
and 𝑘 is the mass transfer coefficient as shown 
below. 

0.75 0.330.04 sD
k Re Sc

d


 
(26) 

here, 𝐷𝑠 is the diffusivity, 𝑑 is the feed channel 
thickness, and 𝑆𝐶 is the Schmidt number as 
shown below. 

s

SC
D






 
(27) 
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3.5. Absorption Chiller 

This sub-system is used for air conditioning and 
supplying the cooling load of the system. 
Applying mass conversion, and the first and the 
second laws of thermodynamics on each 
component of the absorption chiller, assuming 
steady state and steady flow, will result in the 
following equations: 

   ,i O i O
m m mx mx      (28) 

o o i iQ W m h m h     
(29) 

 cooling out inQ m h h 
 

(30) 

3.6. Exergy Analysis 

Exergy analysis is an efficient tool for 
analyzing and improving industrial processes. 
Considering the steady state condition and 
applying the exergy balance equation will result 
in the following equation [27]:  

˙ ˙ ˙

Q w Din in out outm ex Ex m ex Ex Ex      
(31) 

where �̇�𝑥 is the exergy rate, 𝐸�̇�𝑄, 𝐸�̇�𝑤, 𝐸�̇�𝐷 are 
the exergy rate of heat transfer crossing the 
boundary of the control volume, exergy rate 
associated with shaft work, and exergy 
destruction respectively; 𝑒𝑥 is the specific flow 
exergy of the process. 

˙ ˙
01 ,Q w

i

T
Ex Q Ex W

T

 
   

   
(32) 

ke po ph chex ex ex ex ex   
 (33) 

The exergy of a substance (𝑒𝑥) is normally 
divided into four parts. These are physical, 
chemical, kinetic, and potential exergy. Since 
the speeds are relatively slow and the elevation 
changes are small in this study, the kinetic and 
the potential exergies are assumed to be 
negligible. 

   , 0 0 0x phe h h T S S   
 (34) 
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(35) 

For calculating the chemical exergy of the 
ammonia-water solution in the absorption 
chiller, the following equation is used [32]: 

3 2

3 2

1ch

sol NH H O

NH H O

x x
ex ex ex

M M

 
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(36) 

exNH3

°  and exH2O
°  are the chemical exergies of 

ammonia and water, respectively. In 
accordance, the exergy of the system will be as 
follows [32]: 
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
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  

   

(43) 

Table 1 summarizes the equations related to 
exergy destruction and efficiency for the 
different components of the system. 

3.7. Economic Analysis 

The cost function of each component and the 
total cost of the system are obtained by using 
economic analysis. One can obtain the cost rate 
by using the equations presented in [5] as 
follows: 

3600

kZ CRF
Z

N




  
(44) 

𝑍𝑘  is the purchase cost of the component and 
CRF is the capital recovery factor. 𝑁 is the 
number of hours the component works per year 
and 𝜑 is the maintenance factor; N = 8000 
hours and 𝜑 = 1.06, respectively, in this paper. 
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CRF is obtained by using the following 
equation [4]: 

 

 

1

1 1

n

n

i i
CRF

i

 


 
 

(45) 

where 𝑖 is the interest rate which is 12 percent 
and 𝑛 is the number of operating years, which is 
20 years in this paper. The cost rates of the 

environmental impact and fuel cost are 

expressed as follows [27]: 

2 2
 , env co co f f fC C m C C m LHV 

 
(46) 

The objective functions are exergy 
efficiency, which should be maximized, and the 
total product cost rate, which should be 
minimized. The total cost rate is [30] as 
follows: 

tot K envC Z C   
(47) 

where �̇�𝐾 is the purchase cost of the 
components explained before. Table 2 shows 
the chosen values for the economic analysis of 
the system. 

Table 1. Components exergy destruction of multigeneration system. 

Components Exergy Efficiency Exergy Destruction 

Biomass combustion chamber 1 2

3




x x

biomass

x

E E
Ψ

E
 , , 1 2 3

  
D E Combx x x xE E E E  

ORC evaporator 4 13 6

5 8

 




x x x

Evp

x x

E E E
Ψ

E E
 , , 4 13 5 6 8

    
D E Evapx x x x x xE E E E E E  

ORC turbine 
,5 ,11




Turbin
Turbin

x x

W
Ψ

E E
 , , ,5 ,11  x D Turbin x Turbin xE E W E  

ORC Condenser ,11 ,12


x x

cond

cond

E E
Ψ

Q
 , , ,11 ,12  x D cond x cond xE E Q E  

ORC Pump 
,12 ,13


x x

pump

Pump

E E
Ψ

W
 , , ,12 ,13  x D Pump x Pump xE E W E  

Water Heater 6 7

10 7

,






x x

W Heater

x x

E E
Ψ

E E
 6 10 7 9,    x WH x x x xE E E E E  

Evaporator 
,24 ,23

,14 ,15






x x

Evp

x x

E E
Ψ

E E
 , , ,24 ,14 ,15 ,23   x D Evp x x x xE E E E E  

Absorber 22 21

26 27






x x

Abs

x x

E E
Ψ

E E
 , , 22 26 18 21

   
D E Absx x x x xE E E E E  

Expansion valve  
, , 19 25 22 24

   
D E e valvex x x x xE E E E E  

Pump  
, , 21 20

  
D E Pumpx x Pump xE E W E  

Heat exchanger  
, , 20 17 18 19

   
D E Hexchx x x x xE E E E E  

Absorber Generator  
, , 8 17 18 16

   
D E Genx x x x xE E E E E  

Condenser  
, , 16 25

 
D E Condx x xE E E  

RO pump  , , ,30 ,31  x D RO Pump x pump xE E W E  

RO desalination unit  , , ,31 ,32 ,34  x D RO  x x xE E E E  

RO turbine  , , ,32 ,33  x D RO Turbin x Turbin xE E W E  
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Table 2. Cost functions of the multigeneration system [4, 5, 27, 31, and 32] 

Components Cost Definition 
Biomass combustion 

chamber and 
evaporator 

   
0.8

6 6
3

0.01 2 350
740

14.29 446

    
    

   
combustion g

P T
Z $ m h exp exp

  
�̇�𝑔 is the flue gas mass flow rate 

ORC Turbine   0.754750Turbin TurbinZ $ W   �̇�𝑇 is the power generated by the turbine 

Generator   0.9560T TZ $ W   �̇�𝑇 is the power generated by the turbine 

ORC Condenser 

  0.6516.62cond condZ $ A     

, 0.15 


cond
cond cond

cond ln

Q
 A   U

U T
 

𝑈𝑐𝑜𝑛𝑑  is the overall heat transfer coefficien 

ORC Pump   0.65200Pump PumpZ $ W   �̇�𝑝𝑢𝑚𝑝 is the rate of pump work 

Water Heater   0.3HW HWZ $ m   𝑚𝐻𝑊 is mass of hot water production 

Desalination Plant   30.98ROZ $ m   𝑚 is the mass of fresh water 

Absorption Chiller    
0.67

chiller EvapZ $ Q   �̇�𝐸𝑣𝑎𝑝 is the cooling load in absorption chiller 

 
4. Multiobjective Optimization 

In order to determine the optimal design 
parameters for the multigeneration system 
described in previous sections, a multiobjective 
optimization method based on the DE algorithm 
and the LUS technique are introduced. In the 
subsequent sections, the details of the proposed 
optimization algorithm and the design 
parameters are introduced. 

4.1. DE Algorithm 

The DE algorithm is an intelligent optimization 
method that starts with an initial random 
population consisting of the NP vectors 
𝑋𝑖 , 𝑖 = 1,2, … , 𝑁𝑃. For a d-dimensional 
problem, each vector i is represented by d 
variables as expressed by 𝑋𝑖 =
[𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑], in which d is the number of 
decision variables. After initialization, these 
vectors are evolved by mutation and 
recombination operations to generate a mutant 
vector 𝑉𝑖 with respect to each individual 𝑋𝑖. 
Many mutation strategies are available in the 
literature [33]. The classical strategy, which is 
“DE/rand/1”, is presented below. 

 1 2 3 1 2 3  i r r r r r r iV X F X X X X X X      
 (48) 

, where 𝑟1,  𝑟2, and 𝑟3 are random integers 
within the range [1, 𝑁𝑃] and 𝐹 is a scale factor 
in the range (0, 2). After mutation, the 
crossover operator is applied to each pair of the 
target vector 𝑋𝑖 and its corresponding mutant 
vector 𝑉𝑖 to produce a trial vector 𝑈𝑖 =
[𝑢𝑖1, 𝑢𝑖2, … , 𝑢𝑖𝑑]. In DE, the most commonly 

used crossover is the uniform crossover, which 
is defined as shown below [33]. 

                

                      

ij

ij

ij

v if rand CRor j l
u

x otherwise

 
 


 

 
(49) 

where 𝑢𝑖𝑗, 𝑣𝑖𝑗, and 𝑥𝑖𝑗 are the jth dimensional 
components of the vectors 𝑈𝑖, 𝑉𝑖, and 𝑋𝑖, 
respectively. 𝐶𝑅 is the predefined crossover 
probability, which is usually set to a fixed value 
in the range (0, 1). 𝑙 is an integer number that is 
randomly chosen from the index set {1, 2,..., d} 
and is used to ensure that the trial vector 𝑈𝑖 
contains at least one parameter from the mutant 

vector 𝑉𝑖. After the crossover, the objective 
values of all the trial vectors are evaluated; 
thereafter, a selection mechanism is employed 
to select the population for the next generation. 
To perform this operation, the objective 
function of each trial vector 𝑈𝑖  is compared to 
the objective of its corresponding target vector 
𝑋𝑖 in the current population. If the trial vector 
𝑈𝑖 gets a better objective function value than 
the target vector 𝑋𝑖, the trial vector will replace 
its corresponding target vector; otherwise, the 
current target vector is retained. In a 
minimization problem, this selection scheme is 
described as follows: 

   *
                     

                      

i i i

i

i

U if f U f X
X

X otherwise


 


 

 
(50) 

where 𝑓(𝑥) is the objective of a solution 𝑥 and 
𝑋𝑖

∗ is the parent vector used to replace the target 
vector in the next generation. The pseudo code 

of the DE algorithm is shown in Table 3. 
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Table 3. Pseudo code for DE Algorithm. 

Objective function 𝒇(𝑿𝒊),  𝑿𝒊 = [𝒙𝒊𝟏, 𝒙𝒊𝟐, … , 𝒙𝒊𝒅] 

1: Generate the initial population 𝑃 = [𝑋1, 𝑋2, … , 𝑋𝑁𝑃] randomly (𝑁𝑃 individuals in 𝑑 dimensions) 
2: Repeat 

3: For 𝑖 = 1 to 𝑁𝑃 perform the operation 

4: Select randomly 𝑟1, 𝑟2, 𝑟3 ∈ [1, 𝑁𝑃], 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 
5: Compute a mutant vector 𝑉𝑖 by using the Eq. (48) 

6: Create the trial vector 𝑈𝑖 by the crossover of 𝑉𝑖  and 𝑋𝑖 by using Eq. (49) 

7: If 𝑓(𝑈𝑖) < 𝑓(𝑋𝑖), then 𝑋𝑖 = 𝑈𝑖  

8: Endif 

9: Endfor 

10: Until stopping condition is met. 
 

4.2. Parameter Tuning of the DE 
algorithm 

The successful implementation of DE depends 
on the proper selection of its control 
parameters. Factors that impact the performance 
of DE are the crossover rate 𝐶𝑅, the scale factor 
𝐹, and the population size 𝑁𝑃. There is no 
agreement in the literature on how to optimally 
select these factors. For example, in [34], start 
with F = 0.5 and 𝐶𝑅 = 0.1 as good initial 
values have been suggested. However, as larger 
𝐶𝑅 results in faster convergence, to check for a 
quick solution, trying 𝐶𝑅 = 0.9 or 𝐶𝑅 = 1 have 
been proposed. Authors in [35], based on 
several experimental analyses, have suggested F 
= 0.2 and CR in the range of [0.5 and 0.9] as 
good initial values. In [34], it has been 
concluded that F = 0.9 is a good compromise 
between the convergence speed and the 
convergence probability. Moreover, as CR 
depends on the nature of the optimization 
problem, reference [36] has suggested choosing 
CR in the range of 0.9 and 1 for non-separable 
and multimodal objective functions, and 
choosing CR in the range of 0 and 0.2 for 
separable objective functions. Reference [37] 
has suggested considering the nature of the 
problem and using sensitivity analysis for 
selecting the best CR value. Moreover, ElQuliti 
and Mohamed [37] have examined the 
correlation between F and CR by using some 
sample values and have concluded that a higher 
number of successes and failures occurred when 
CR = 0.5 and CR = 1, respectively. In [38–39], 
a self-adaptive SDE algorithm has been 
proposed, in which F is self-adapted by using a 
mutation rule similar to the mutation operator in 
the basic DE. As there is no fixed rule for the 
optimal selection of DE parameters and the 
optimal combination of these parameters may 
change based on desired accuracy and 

computational resources, in order to overcome 
the aforementioned drawbacks and also to avoid 
the tuning of parameters by the trial-and-error 
procedure, the LUS method described in next 
section is used in this paper for finding out the 
optimal values of the DE parameters. 

4.3. LUS Algorithm 

LUS uses sampling as well as a search-range 
through iteration methods to detect the best 
choice out of the tuning parameters for the 
optimization algorithms [40]. For each of the 
tuning parameters, LUS starts with a search 
range and then decreases it iteratively until the 
optimal value is reached. The search range is 

defined as D= (D1, D2,…, Dn) where 𝑛 is the total 

number of parameters to be optimized [41]. For 

example, in the DE algorithm, as there are four 

tuning parameters (i.e., 𝐶𝑅, 𝐹, 𝑁𝑃, and 

𝑀𝑎𝑥𝐺𝑒𝑛), ); 𝑛 =  4. The initial search range is 

defined for each of the tuning parameters based 

on the upper and the lower boundaries bup= (bup1, 

bup2, …, bupn) and blow= (blow1, blow2, …, blown)  . 

, , i up i down iD b b  (51) 

Firstly, the optimal solution 𝑠 is defined as 
𝑠 =  (𝑠1, 𝑠2, . . . , 𝑠𝑛). Next, at 𝑡 = 0, the value 
of each parameter is initialized to uniformly 
distribute random numbers as shown below 
[42]. 

 ~ ,low ups U b b  (52) 

Then, the objective function is evaluated for 
the 𝑠 values defined above. After that, a new set 
of DE parameters 𝑠𝑛𝑒𝑤 is generated as shown 
below. 

 news s a  (53) 
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where 𝑎 =  (𝑎1, 𝑎2, . . . , 𝑎𝑛) is a vector of 
uniformly distributed random values inside the 
search range 𝐷, ; i.e., 𝑎 ∼ (−𝐷, 𝐷). 

Now, 𝑠𝑛𝑒𝑤 is used to calculate the new 
fitness value. If this new fitness value is better 
than the initial fitness value, s is changed to 
𝑠 =  𝑠𝑛𝑒𝑤, ; otherwise, as shown below, the 

search range 𝐷 is decreased for all the 

dimensions by multiplying with a factor 𝑞 to 
determine a new set of parameters 𝑠𝑛𝑒𝑤 [41]. 

   D qD  (54) 

The decrease factor 𝑞 is defined as the 
Eq.(55): 

  2


 nq


 (55) 

where 𝛽 is a user-defined behavior parameter 
and 𝑛 is the number of DE parameters that are 
being optimized.  

The aforementioned process is repeated until 
the maximal number of iterations 𝑚𝑎𝑥𝐸𝑣𝑎𝑙 for 
LUS algorithm is reached or until accuracy, for 
the generated set of weights, is 100 percent 
[40]. The pseudo code of the LUS algorithm 
[41] and the structure of the meta-optimization 
algorithm for DE are shown in Tables 4 and 5, 
respectively. 

5. Multiobjective Optimization Problem 

Multiobjective optimization problems (MOP) 
include several conflicting objective functions 
that should be simultaneously optimized. The 
outputs of the algorithms that optimize 
multiobjective problems are a set of 
nondominated solutions known as Pareto-
optimal solutions. If 𝑋1 and 𝑋2 are two different 
solutions, 𝑋1 dominates 𝑋2 when no other 
solution can be found to dominate 𝑋1 by using 
the definition of Pareto dominance as shown 
below [43]. 

     

     
1 2

1 2

1,2, , , 

  1,2, , , 

   

   

i i

j j

i n F X F X

j n F X F X
 (56) 

where 𝑛 is the number of objective functions. 
For a given MOP, the Pareto front ƤŦ∗ is a set 
of vectors of the objective functions that are 
obtained by using the vectors of the design 
variables in the Pareto set  𝑃∗: 

      *

1 2* { ,  , ., |   }   nF X F X F X X PŦ  (57) 

where  𝑃∗ |{  X ∄ )}()(: XFXFX   . 

Table 4. Pseudo Code for the LUS algorithm [40]. 

1 Procedure LUS 
2 Set 𝑞 ← 2−𝛽 𝑛⁄  
3 For dimension 𝑗𝜖{1,2, … , 𝑛} 𝒅𝒐 
4 Set 𝑠𝑗~𝑈(𝑙𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑟𝑦 𝑗, 𝑢𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑟𝑦 𝑗) 
5 Set 𝐷𝑗 ← |𝑢𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑟𝑦 𝑗 − 𝑙𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑟𝑦 𝑗| 
6 While 

𝑒𝑣𝑎𝑙 < 𝑚𝑎𝑥𝐸𝑣𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑎𝑐𝑐𝑒𝑝𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝒅𝒐 
7 Set 𝑎𝑗~𝑈(−𝐷𝑗 , 𝐷𝑗) 
8 Set 𝑦𝑗 ← 𝑠𝑗 + 𝑎𝑗 
9 If 𝑓(𝑦𝑗) < 𝑓(𝑠𝑗)then 

10 Set 𝑠𝑗 ← 𝑦𝑗 
11 Else 
12 Set 𝐷𝑗 ← 𝑞. 𝐷𝑗 

 

Table 5. Pseudo Code of LUS Based DE Algorithm 

 Select DE parameters randomly and initialize LUS. 
 Iterate LUS using the following steps: 
- Among all earlier obtained set of DE parameters, select the most suitable parameter according to LUS 

optimization methodology. 
- Calculate the key performance indicators to define how good the selected set of DE parameters is. 
- Discard this new set of DE parameters if the calculated key performance indicators do not show 

improvements; otherwise, retain it. 
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The unique capability of DE and other 
intelligent optimization algorithms is that they 
can find multiple solutions in one single 
simulation run. However, the original MOP 

scheme has to be modified before it can be 
solved by using intelligent optimization 
algorithms. The proposed multiobjective DE 

algorithm is explained in the following section. 

5.1. Multiobjective DE Algorithm 

The MODE archives both dominated and 
nondominated solutions. Hence, an algorithm is 
needed to update the archived solutions and 
search for the solution which dominates other 
solutions. For performing this task, the 𝜀-
dominance method is used in this paper. In this 
method, the size of the final external archive 
depends on the 𝜀 value, which is normally a 
user-defined parameter. This method is briefly 
described in the section below.  

5.2. Archive Updating 

The first step involves checking whether 
solutions are feasible or not. A solution is 
considered feasible if it fulfills all constraints. 
The next step is to check whether a feasible 
solution is dominated by other solutions or not. 
The nondominated feasible solutions are then 
stored in the archive list. During this process, if 
any of the archived solutions are dominated by 
other solutions, then, the dominated solution 
solutions will be removed from the archive list. 
If there are not enough places for storing all the 
feasible solutions, a grid-based and 𝜀-
dominance method will be used in the archiving 
process. In this method, the dimension of the 
space will be equal to the number of objectives. 
Each dimension is divided into several boxes 
with a 𝜀-to-𝜀 size, such that each box contains 
one or more solutions. If the solutions inside a 
box are dominated by other boxes, the box, 
along with its solutions, will be removed. In the 
end, each box should hold only one solution. If 
a box has more than one solution, the solution 
at a lesser distance from the left corner of the 
box will remain and the others will be removed 
[44]. This will assure us that at the end of 
process that the retained solutions are 
nondominated feasible solutions.  

Similar to a single objective DE algorithm, 
in which the trial vector replaces the target 
vector if the trial vector is better than target 
vector, in multiobjective DE, the target vector is 
replaced by the trial vector if the trial vector 

dominates the target vector [45]. However, if 
neither trial nor target vectors are dominated, 
crowding distance is applied to specify the less 
crowded distance as the new target vector for 
the next generation. For calculating crowding 
distance, the population is sorted in ascending 
order, based on the values of the objective 
functions. Then, boundary solutions (i.e., 
solutions with the highest and the lowest 
values) of each objective function are set to an 
infinite distance value and the remaining 
solutions (i.e., intermediate solutions) are set to 
the absolute normalized difference of two 
adjacent solutions. This process is repeated for 
all the objective functions and the overall 
crowding distance value is calculated as the 
sum of the individual distance values of each 
objective as shown below. 
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, where 𝐶𝐷𝑖 is the 𝑖th individual crowding 
distance value and 𝑓𝑖 is the 𝑖th objective 
function. From the above equation, it is 
observed that the CD is the mean value of 
Euclidean distance. 

In order to illustrate the efficiency and the 
robustness of the proposed MODE algorithm, the 
algorithm is tested on the multigeneration system 
described in the previous sections. Moreover, the 
algorithm has been compared with two well-
known multiobjective optimization algorithms 
called NSGAII [46] and MOPSO [47]. 

5.3. Decision Variables  

The decision variables are selected from design 
parameters according to their impact on objective 
functions. In this paper, eight parameters have 
been selected as decision variables; these include 
evaporator temperature (𝑇𝐸𝑣𝑎𝑝), pump efficiency 
(𝜂𝑝𝑢𝑚𝑝), pump inlet temperature (𝑇𝑝𝑢𝑚𝑝), 
evaporator pinch point temperature (𝑇𝑃𝑃) ,  ORC 
turbine inlet pressure (𝑃𝑂𝑅𝐶,𝑇𝑢𝑟), ORC turbine 
inlet temperature (𝑇𝑂𝑅𝐶,𝑇𝑢𝑟), turbine efficiency 
(𝜂𝑇𝑢𝑟𝑏𝑖𝑛), and biomass flow rate (�̇�𝑏𝑖𝑜𝑚𝑎𝑠𝑠). 
The upper and the lower limits of these 

parameters are also shown in Table 6 [4]. 

5.4. Model Validation 

The main part of the modeling exercise is 
related to the synthesis of the gas generation  
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Table 6. Characteristic parameters of the system. 

Components Constraints 
Evaporator temperature 275 °𝐾 < 𝑇𝐸𝑉𝑃 < 279°𝐾 
Pump efficiency 𝜂𝑝𝑢𝑚𝑝 < 0.9 
Inlet pump temperature 𝑇𝑝𝑢𝑚𝑝<388°𝐾 
Evaporator pinch point temperature 283°𝐾<𝑇𝑃𝑃< 308°𝐾 
ORC turbine inlet pressure  1500 𝐾𝑝𝑎 < 𝑃𝑂𝑅𝐶,𝑇𝑢𝑟 < 3000𝐾𝑝𝑎 
ORC turbine inlet temperature 593°𝐾 <𝑇𝑂𝑅𝐶,𝑇𝑢𝑟<673°𝐾 
Turbine efficiency 𝜂𝑇𝑢𝑟𝑏𝑖𝑛 < 0.9 
Biomass flow rate 0.2 < �̇�𝑏𝑖𝑜𝑚𝑎𝑠𝑠 < 0.4 

 
 

section. Model validation is performed by 
comparing the synthesis gas composition with 
the compositions reported in the literature. 
Table 7 summarizes the synthesis gas 
composition obtained from the model presented 
in this paper and the synthesis gas composition 
reported in [48] as the results of experimental 
tests and synthesis gas composition reported in 
[49] as the results of conducted simulations. As 
observable from Table 7, compositions are 
close to each other and the proposed model 
accurately predicts the compositions.6. 
Optimization Results from the Proposed Model. 
In this section, the feasibility and the adequacy 
of the proposed MODE approach have been 
evaluated in the multigeneration system 
problem proposed in the previous sections. The 

settings for meta-optimization are explained 

hereafter. First, the range and the possible 

values of the DE parameters are chosen as 

follows: 

   

   

1,2, .,200 , 1,2, .,300 ,

0,1 , 0,2

   

 

NP  MaxGen  

CR F
  

Then, LUS is performed trying to find the 
optimal choice of the DE parameters. After that, 
the objective values of a given choice of the DE 
parameters are computed. LUS has a number of 
iterations; out of these, 20 iterations are chosen. 
Using the above settings, the best performing 
parameters found for the DE method are as 
follows: 

23, 267, 0.8246 ,

0.4039

  



NP  MaxGen  CR

F
  

The Pareto frontier solutions for the MODE, 
MOPSO, and NSGA-II optimization algorithms 
are shown in Fig. 2. 

To show the effectiveness of the MODE 
optimization algorithm, its performance is 
measured and compared with the MOPSO and 
the NSGA-II optimization algorithms; two 

indices named generational distance defined in 
[45] as convergence metric and spread defined 
in [46] as diversity metric. To that end, a 
weighted metric combining the generational 
distance metric, GD, and the spread metric ∆, 
suggested in [47], is used and the best 
nondominated Pareto front obtained from the 
combined Pareto fronts of 20 independent runs 
of each algorithm for 300 generations are used 
to calculate the metrics as follows: 

1 2

1 2with 1

  

 

W w GD w

w w
  

Smaller Δ refers to better diversity and 
smaller GD refers to better convergence. Hence, 
the algorithm with smaller 𝑊 has better 
convergence and diversity ability. 

Table 8 shows the weighted convergence and 
diversity metrics (W), assuming that w1 = w2. 
From this table, it is observed that performance 
of MODE is better than the NSGA-II and the 
MOPSO algorithms in terms of convergence as 
well as diversity. The solutions given by MODE 
have much better diversity than the other two 
algorithms because of the better diversity 
maintenance strategy of MODE. Moreover, the 
proposed MODE has a better distributing ability 
that helps convergence. 

The Pareto curve, obtained using the 
proposed MODE algorithm for both objective 
functions, i.e., exergy efficiency and system 
cost, when the decision variables vary in their 
respective limits, is shown in Fig. 2. From this 
figure, it is observed that when the exergy 
efficiency increases, the total system cost also 
increases. Point 𝐴 on the curve is the optimal 
solution when only the system cost is 
considered and the exergy efficiency is ignored. 
Point 𝐶 on the curve is the optimal solution 
when only the exergy efficiency is considered 
and the system cost is ignored.  
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Table 7. Summarizes synthesis gas composition. 

Composition Value (%) Lab results[48] Duta [49] 
Hydrogen (𝐻2) 17.6 17 18.03 
Carbon monoxide (CO) 20.08 18.4 18.51 
Carbon dioxide (𝐶𝑂2) 10.78 10.6 11.43 
Methane (𝐶𝐻4) 1.13 1.3 0.11 
Nitrogen (𝑁2) 50.42 52.7 51.92 
Moisture content in biomass 16% 16% 16% 

 

Fig. 2. Two-dimensional Pareto-optimal front. 

Table 8. Performance metrics for three multiobjective optimization algorithms. 

 Generational Distance Spread Weighted Metric 
 MODE MOPSO NSGA-II MODE MOPSO NSGA-II MODE MOPSO NSGA-II 

Mean 0.00054 0.00063 0.00074 0.16507 0.25643 0.49576 0.53137 0.68429 1.0000 
SD 0.00015 0.00017 0.00016 0.02431 0.04653 0.06362 0.63223 0.86568 0.97058 
Min 0.00034 0.00041 0.00051 0.15159 0.32874 0.31372 0.56385 0.90196 0.97715 
Max 0.00117 0.00127 0.00121 0.23438 0.59437 0.63065 0.64644 0.97123 0.97637 

 

Fig. 3. Best trade-off values for the objective functions using proposed MODE. 
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As both objective functions cannot be 
simultaneously optimized, as shown in Fig. 3, 
the ideal solution is not on the Pareto curve. 
Although all the points on the Pareto curve are 
optimal solutions, the closest point to the ideal 
solution may be considered as the final optimal 
solution. Hence, the selection of the optimal 
solution depends on the preferences and the 
criteria of the decision maker. In this paper, the 
fuzzy decision making mechanism [50] is 
implemented to find out the best compromised 

solution. The linear membership value 𝜇𝑖
𝑗 is 

initially calculated for the ith objective of the 

jth member, 𝑓𝑖
𝑗, in the archive list using Eq.(61) 
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1              
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, where  𝑓𝑖
𝑚𝑖𝑛 and 𝑓𝑖

𝑚𝑎𝑥 are the lower and the 
upper portions of the ith objective function. 
After that, a fuzzy decision-making approach is 
implemented as follows: 

1

1 1



 




 

n j

i ij i

M n j

i ij i

 


 
 (62) 

, where 𝑀 is the number of non-dominated 
solutions and 𝜇𝑗 is the membership function 
value of the non-dominated solution 𝑗. Then, 
the Pareto solution that obtains the maximum 
value of 𝜇𝑗is chosen as the compromised 
solution. In the above equation, 𝜎𝑖 is the desired 
weighting factor of the 𝑖th objective function. It 
is worth mentioning that 𝜎𝑖 ≥ 0 and ∑ 𝜎𝑖 =𝑛

𝑖=1

1. According to the above mechanism, Point 𝐵 
is selected as the best compromised solution. 
As observable, while moving from Point 𝐵 
toward Point 𝐶, the cost function increases and 
while moving from Point 𝐵 toward 𝐴, the 

exergy efficiency reduces. Hence, it may be 
concluded that Point 𝐵 is the closest point to the 
ideal solution from the exergy efficiency as 
well as the system cost point of view.  

To find a relation between the exergy 
efficiency and the system cost rate, the curve 
shown in Fig. 3 has been fitted on optimal 
solutions resulting from multiobjective 
optimization. Moreover, a formula valid for the 
30 to 34 percent range of exergy efficiency is 
defined for the fitted curve. This formula that 
can be used for estimating the optimal exergy 
efficiency as a function of the total system cost 
is shown in Eq.(63).  

2 2
0.347 0.341

0.0156 0.0409553.4 604.9

    
    
    totalC e e

 

 (63) 

Table 9 summarizes the values of the design 
parameters for the two critical Points A and C as 
well as the obtained compromised Solution B. 

Table 10 shows certain characteristics of the 
system. As observable from this table, from 
Point A to Point C, both objective functions, 
i.e., the total cost rate and the exergy efficiency 
increase. As expressed before, Point A is 
preferred when the total cost rate is the sole 
objective function and Point C is the ideal 
solution when the exergy efficiency is the sole 
objective function. However, Point B shows 
better results for both objective functions. Other 
thermodynamic characteristics also confirm this 
choice. For instance, from Point B to C, the 
total exergy destruction rate decreases when the 
exergy efficiency increases. 

7. Sensitivity Analysis 

Sensitivity analysis is normally performed to 
study the impact of the important parameters on 
the system performance. The effects of the 
design parameters on both the objective function 
exergy efficiency (EE) and the total cost rate 
(TCR) are calculated as shown in Table 11. 

Table 9. The optimal values of design parameters obtained from MODE algorithm. 

Design Parameter A B C 
Evaporator temperature (𝐾) 278.3 281.3 279.1 
Pump efficiency 0.79 0.84 0.87 
Inlet pump temperature (𝐾) 387 385 385 
 Evaporator pinch point temperature (𝐾) 286.2 283.8 284.4 
ORC turbine inlet pressure (Kpa) 1476 2038 3784 
ORC turbine inlet temperature(𝐾) 601 672.8 664.7 
Turbine efficiency 0.82 0.88 0.91 
Biomass flow rate (kg/s) 0.18 0.19 0.22 
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Table 10. Thermodynamic characteristics of three Pareto optimal solutions. 

Parameter A B C 
�̇�𝑛𝑒𝑡(𝑘𝑤) 283.64 314.73 367.21 

Ψ 0.29 0.31 0.34 
�̇�𝑥𝐷,𝑡𝑜𝑡(𝑘𝑤) 3783 3411 3496 

�̇�𝐶𝑜𝑜𝑙𝑖𝑛𝑔(𝑘𝑤) 2065 1592 1626 

�̇�𝐻𝑒𝑎𝑡𝑖𝑛𝑔(𝑘𝑤) 1494 1773 1681 

�̇�𝑡𝑜𝑡($/ℎ) 285.4 293.8 883.2 
�̇�𝐻𝑜𝑡.𝑊(𝑘𝑔/𝑠) 0.56 0.58 0.55 
𝐶𝑂2(kg/Mwh) 351.3 374.8 369.7 
�̇�𝑓𝑟𝑒𝑠ℎ(𝑘𝑔/𝑠) 1.12 1.36 1.82 

  Table 11. The effects of design parameters on objective functions. 

 �̇�𝒃𝒊𝒐𝒎𝒂𝒔𝒔 𝑷𝒊𝒏,𝑶𝑹𝑪,𝑻𝒖𝒓𝒃𝒊𝒏  𝑻𝒊𝒏,𝑶𝑹𝑪,𝑻𝒖𝒓𝒃𝒊𝒏 𝑻𝑷,𝑬𝒗𝒂𝒑 𝜼𝒊𝒔𝒆𝒏,𝑻𝒖𝒓 𝑻𝑬𝒗𝒂𝒑 𝜼𝒊𝒔𝒆𝒏,𝑷𝒖𝒎𝒑 

EE Negative Positive  Positive Negative Positive Positive NSE 

TCR Negative Negative  Negative Positive Negative Negative NSE 
NSE: No significant effect, EF: Exergy efficiency, TCR: Total cost rate ($/h) 

The following conclusions can be made 
from Table 11:  

An increase in the biomass flow rate has a 
negative effect on both objective functions. An 
increase in the biomass flow rate leads to a 
decrease in the system exergy efficiency 
because the denominator of exergy equation 
(Eq.(39)) increases. Furthermore, the negative 
impact on the total cost rate is a result of an 
increase in this parameter, which increases the 
total cost rate of the system. 

When the ORC turbine inlet pressure 
increases, the total cost rate as well as the 
exergy efficiency increases. When the turbine 
inlet pressure increases due to an increase in the 
cooling load and the net power output of the 
system, the exergy efficiency of the system 
increases. When the inlet pressure as well as the 
turbine purchase cost increase, the total cost 
rate of the system is increased. As a result, an 
increase in the ORC turbine inlet pressure has a 
negative as well as positive effect on the 
objective functions.  

An increase in turbine inlet temperature has 
a positive impact on the exergy efficiency 
because increasing the turbine inlet temperature 
has a positive and a negative impact on the 
objective function; while the other parameters 
are kept fixed, increasing this parameters leads 
to an increase in the turbine inlet enthalpy as 
well as turbine work, which finally results in an 
increase in exergy efficiency, according to Eq. 
(39). On the other hand, an increase in the 
turbine inlet temperature increases the total cost 
of the system due to an increase in the turbine 

purchase cost. An increase in the turbine 
purchase cost leads to an increase in the total 
cost of the system.  

When the evaporator pinch point 
temperature increases, the exergy efficiency of 
the system decreases; this is a result of the fact 
that the higher the pinch point temperature, the 
lower the energy being utilized in evaporator; 
this leads to a reduction of the ORC turbine 
power output. On the other hand, an increase in 
the pinch point temperature, while fixing other 
design parameters, results in a decrease in the 
heat transfer area of the evaporator. This is why 
the total cost rate of the system decreases. 

An increase in the isentropic turbine 
efficiency results in an increase in system 
exergy efficiency and an increase in the total 
cost of the system. Increasing this parameter 
results in an increase in the steam turbine power 
output; this directly leads to an increase in 
exergy efficiency. Moreover, increasing this 
parameter leads to an increase in steam turbine 
purchase and maintenance cost. 

Increasing the absorption chiller evaporator 
temperature results in an increase in the cooling 
load of the absorption chiller and simultaneously 
increases the cost of the chiller. The other 
parameter, pump isentropic efficiency, does not 
have a significant effect on any of the objective 
functions. The reason behind this phenomenon is 
that unlike the maintenance and the purchase 
cost of the turbine, the purchase cost of pumps is 
relatively low. 

The system under study is compared to a 
multigeneration energy system from various 
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aspects such as thermodynamic modeling, 
environmental impact, and exergy analysis. 
Products of each energy system are shown in 
Table 12.  

System 1 consists of a gas turbine cycle, an 
organic Rankine cycle (ORC), a single-effect 
absorption chiller, a domestic water heater, and 
a PEM electrolyzer [51]. According to the 
results presented in Table 12, it is observed that 
the net power output of System 2 (i.e., the 
system studied in this paper) is lower than 
System 1. However, the total cost rate as well 
as the CO2 emission of System 2 is lower than 
System 1. 

In order to select one of these two systems 
as the final choice, one should prioritize the 
requirement first. For example, if CO2 emission 
or the total cost is the priority, then, System 2 is 
the most suitable system. In addition, the place 
where the system is going to be used should 
have adequate biomass. However, the amount 
of each useful output can help designers to 
decide on which system is to be selected. For 
instance, the gas turbine multigeneration system 
can provide more electricity than a biomass-
based energy system. 

From the above comparison, it is concluded 
that several factors may impact the decisions on 
selecting a suitable multigeneration energy 
system. These factors include system cost, 
product requirement (e.g., electricity, heating, 
cooling, etc.), environmental impact, 
multigeneration site location, fuel availability, 
and cost.  

8. Conclusion 

In this paper, the thermodynamic, exergy, and 
exergy economic modeling of a multigeneration 
energy system were presented. The optimal 
design of the mentioned energy system was 
performed using a hybrid evolutionary 
algorithm based on MODE and the LUS 
technique. Then, the results were compared 
with the MOPSO and the NSGA-II methods. 
The effectiveness and the advantages of the 

proposed method were verified using various 
indices. In order to provide a closed form 
equation for the system, a curve-fitting 
technique was applied on the obtained 
optimized points. Furthermore, the effects of 
the different design parameters on the total cost 
rate and exergy efficiency were evaluated using 
sensitivity analysis. 
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