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ABSTRACT    

Solar energy is an environmentally sustainable energy source as it is 
clean and inexhaustible. Solar systems are very common and cost-
effective, thus, can be used for many home applications. In this paper, a 
new method is presented to optimize solar systems economically, 
regarding to energy cost fluctuations. In spite of conventional analyses, 
in which the inflation is considered constant, this method considers a 
probability distribution for inflation. The probability function of the life 
cycle solar saving (LCS) is then estimated by the Monte Carlo method. 
The expected value of LCS is used as the objective function. The 
standard domestic solar system is considered as a benchmark to show 
capability of the method. Three most important parameters of a solar 
water heating system are considered as manipulated variables. The 
optimal value of each parameter was found based on the proposed 
procedure, and employing the particle swarm optimization (PSO) 
algorithm as the optimization method. The results show that the 
collector area of 17 m2, collector angle of 42o, and storage tank of 100 
l/m2 maximize LCS to the mean value of 9930 USD for the selected case 
study. Also, the probability distribution of LCS shows that the mean 
value of the payback time is 4.1138 years with standard deviation of 
1.3182. 
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1. Introduction  

The widespread use of fossil fuels that are 
non-renewable leads to climate change, has 
adverse environmental impacts, and makes 
the exploration of sustainable and renewable 
energy sources more vital than ever.  

In recent years, many studies have been 
done on the use of renewable energy 
technologies and their assessment. One of the 
factors that significantly affects the use of 
renewable energies is their uncertainty. This 
uncertainty can be the result of their 
changeable nature.  
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 For example, considering wind energy as a 
renewable energy, the wind speed varies due 
to weather conditions and many other 
parameters on a daily basis and during the 
year. The uncertainty can be attributed to the 
uncertainty in the cost assessment of the use 
of these resources. Some parameters such as 
amount of initial investment, saving of 
previous resources, and return of capital cost 
considered in economic analysis are strongly 
affected by uncertainty in economic 
parameters such as inflation rate or price of 
energy carriers 

Renewable energy technologies usually 
come with higher power-specific upfront 
capital   costs  compared  to  the  investments  
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into conventional energy infrastructures [1, 2]. 
In general, capital costs are a function of the 
borrower's credit rating, the provided 
securities, the leverage ratio, and the 
aggregated project risk. Usually, higher 
aggregated project risk leads to higher interest 
rates demanded for the loan or even to the 
complete loan denial by lenders such as banks 
[3]. Furthermore, high transaction costs and 
other risks may prevent potential investors or 
institutional lenders to capitalize in renewable 
energy systems [1, 2]. Therefore, coping with 
financial constraints of renewable energy 
systems, investments require a stable and 
reliable political and legal framework so 
potential investors can reduce regulatory risks 
and hence significantly decrease the capital 
cost [4]. 

There are several methods to optimize the 
renewable energy systems. Most of the 
methods are based on maximizing economic 
benefits of these systems over their life time. 
To calculate economic benefits of these 
systems over a long period of time, it is 
essential to have an estimate for fuel price 
over these years. Most of the methods use a 
constant inflation for fuel price over these 
years. Looking at fuel price fluctuation over 
recent years shows that considering constant 
inflation is not a justified assumption (Fig. 1) 
[5]. There are a few works on economical 
consideration of energy and renewable energy 
systems in uncertainty of economic 
parameters. For example, de Silva Pereira et 
al proposed a method that utilizes the Monte 
Carlo method (MCM) to consider the 
uncertainty of variables’ behavior using 
probability distribution functions [6]. They 
successfully applied  this  method  on  a  Grid-  

 Connected Photovoltaic System to analyze the 
risk of taking a specific decision [6]. Also, 
Arnold and Yildiz presented a new financial 
analysis. They demonstrated the new financial 
analysis combined with Monte Carlo 
Simulation aided in optimizing the conceptual 
design of an investment project with respect 
to capital returns and risk [3].Solar energy is 
one of the environmentally sustainable 
options that plays a significant role to replace 
non-renewable energy sources [7]. Solar 
water heating systems (SWHSs) are very 
common and cost-effective systems which can 
be used for many home applications [8]. 
SWHS contains conventional flat plate solar 
collectors (FPSCs) with a metal absorber plate 
and covers to convert incident solar radiation 
into heat and conduct it to a medium such as 
water [7].Several parameters, such as 
collector type, collector area, storage tank 
capacity, collector angle, fluid flow rate, and 
environmental conditions, affect the 
efficiency and cost of domestic solar systems. 
For example, oversizing the solar system 
increases the capital cost and rendering the 
system to be economically infeasible. On the 
other hand, under sizing the solar system 
reduces the solar fraction and increases the 
fuel cost of the auxiliary system [9]. 
Therefore, appropriate design of this system is 
necessary to guarantee an efficient operation 
and improve the economic feasibility of the 
solar system. 

Several methods have been developed to 
design a SWHS. These methods can be 
generally classified as the correlation-based 
methods and simulation based methods. The 
utilizability method, f-chart method, and ‰f-
chart  method   are   the  common  correlation-  

 
Fig. 1. Fuel (Brent crude oil) price Fluctuation [5] 
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based methods, in which the design 
parameters are usually given by the tables or 
charts provided by manufactures [8, 10]. F-
chart method is the most common method 
which has been widely used in the literature 
[11]. Chang and Minardi compared the 
optimal collector area calculated by both 
TRNSYS program as simulation based 
method and f-chart method and found a good 
agreement between the results [12]. Also, 
Kalil Rahman et al. programmed the f-chart 
method and cost optimization techniques to 
determine the optimal number of collector 
panel for higher efficiency of the system [13]. 
Moreover, Kezhi et al calculated the optimal 
collector angle considering the monthly 
summation of auxiliary heat load with one 
year as the objective function. Their results 
exhibited that the optimal angle depends on 
the heat collector area or solar fraction [14]. 

Earlier, the optimal parameters were usually 
estimated by the operating performances such 
as the annual energy cost, internal rate of 
return, solar fraction, and design space. 
However, recently determining the optimal 
design considering life cycle analysis has 
increasingly attracted attention. In a life cycle 
analysis, besides the energy performance in 
the operation stage, the energy performances 
in all stages (e.g., production, operation, and 
maintenance) are taken into account [8]. 
Dennis Barely and Winn used f-chart program 
to approximate collector area which 
minimizes the total life cycle cost of an active 
domestic hot water heating system [15]. Also, 
Schroeder considered shadow effect of 
adjunct collectors on collector area and 
calculated the optimal collector area which 
maximizes life cycle saving [16]. Moreover, 
the collector  area  for  SWHS  was  optimized 

 based on life cycle cost analysis [9, 17]. In 
addition, Lima et al. estimated the optimal 
collector angle, collector area, and storage 
temperature based on life-cycle energy 
analysis using TRNSYS program as 
simulation based method [18].  

In this study, a new method is proposed to 
optimize solar systems economically. A 
domestic SWHS in Los Angeles was 
considered as a benchmark to calculate 
optimal design of SWHS considering both life 
cycle analysis and risk analysis using Monte 
Carlo method. The annual thermal 
performance of solar active building heating 
system was estimated using f-chart method. 
The inflation rate was assumed to be 
inconstant and normally distributed over 
years. The probability distribution function 
was estimated by inflation data over the 
previous 45 years. The Monte Carlo method 
was then employed to assess probability 
function distribution of the life cycle solar 
saving. The expected value of the LCS was 
used as the objective function to find optimal 
values of the decision variables. 

 
2.Problem definition 

 
As mentioned, the objective of this study is to 
optimize the solar water heating system 
presented in Figure 2, economically. The 
SWHS contains solar thermal collectors, 
water tanks, interconnecting pipelines, and the 
water for transporting heat from the collector 
to storage. In this study, the collector area, 
storage capacity, collector type, collector 
angle, load, collector heat exchanger size, and 
fluid flow rate were considered as system 
parameters of design since they affect system 
efficiency. 

 

 
Fig. 2. Standard solar water heating system 
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3.Methodology 
 

3.1. Economic Analysis 
 
Generally, solar systems are associated by 
high initial cost and low operating costs since 
the energy source is free, but the equipment 
for collecting the solar energy and convert it 
to heat are costly. In order to make solar 
system economically feasible, it should be 
designed such that the costs of collectors, 
other required equipment, and conventional 
auxiliary fuel are lower than the cost of other 
conventional energy sources [19]. Therefore, 
an initial known investment along with 
present worth of estimated future operating 
costs, including both the cost to run and 
maintain the solar energy and auxiliary energy 
used as a backup should be considered. Other 
factors like the interest paid on money 
borrowed, inflation, taxes, insurance cost, and 
resale of equipment at the end of its life 
should also be considered. The objective of 
this economic analysis is to determine the 
optimal size of a solar system that gives the 
lowest combination of solar and auxiliary 
energy cost. The annual cost, Ὓ, was 
calculated by: 
Ὓ ὅ ὅ ὅ

ὅ ὅ

ὅ ὅ 

(1) 

where Cmor is the annual mortgage payment, 
ὅ  is the annual fuel cost, ὅ  is the 
annual maintenance cost, ὅ  is the annual 
Ὓ ὅ ὅ ὅ

ὅ ὅ

ὅ ὅ 

 

(2) 

where ὅ  is the fuel saving, ὅ  is the 
annual extra mortgage payment, ὅ  is the 
annual extra maintenance cost, ὅ  is the 
annual extra parasitic energy cost, ὅ  is the 
annual extra property taxes, ὅ  is the 
annual extra insurance cost, and ὅ is the 
annual income tax saving. 

These terms can be collected or subtracted 
if they are of the same type. In economics, 
costs are defined in three types; present time, 
future time, and periodic payments.  

Generally, the present worth of an 
investment or cost at the end of ὲ  year, 
ὖὡ, at discount rate of Ὠ and constant 
inflation rate of  Ὥ can be calculated by [19]: 

ὖὡ  
ὅρ Ὥ

ρ Ὠ
 

 

(3) 

 

 Life cycle solar saving is defined as 
summation of present value of the solar 
saving and down payment. 

Life cycle solar saving = present 

worth of solar saving-down 

payment 

 

(4) 

 
3.2. Fuel Saving 

 
To estimate the fuel saving, energy covered 
by solar energy, solar fraction has to be 
calculated. The f-chart method was used to 
calculate the annual thermal performance of 
solar active building heating system. The 
monthly fraction, Ὢ, of the total heating load, 
which can be supplied by solar energy system, 
was calculated using f-chart method [19]: 

Ὢ
ὒ  ὒ ȟ

ὒ
 
ὗȟ
ὒ

 
(5) 

where ὒ is the monthly energy required by 
the load, ὒ ȟ is monthly energy required by 
the auxiliary, and ὗȟ is the solar energy 
delivered. 

In the analysis of standard solar water 
heating system, the fraction of the monthly 
load supplied by solar energy is a function of 
two dimensionless parameters. The first (ὢ) is 
the ratio of collector losses to heating load 
which comprises both space heating and hot 
water load. The second (ὣ) is the ratio of 
absorbed solar radiation to the heating load 
[19]. 

Ὢ ρȢπςωὣ πȢπφυὢ πȢςτυὣ

πȢππρψὢ
πȢπςρυὣ  

 
(6) 

where ὢ and ὣ are: 

ὢ  ὊὟ
Ὂ

Ὂ
Ὕ  Ὕ Ўὸ

ὃ

ὒ
 

(7) 

ὢ

ὢ 
ρρȢφz ρȢρψὝ σȢψφὝ ςȢσςὝ

ρππὝ
 

 (8) 

ὣ  Ὂ †‌
Ὂ

Ὂ
 
†‌

†‌
Ὄὔ 

ὃ

ὒ
 

 

(9) 

where ὢ is the corrected value of X, Ὂ is the 
heat removal factor, Ὂ is the collector 
efficiency factor, Ὗ  is the overall heat loss 
coefficient based on the collector area, Ὕ  is 
the reference temperature, Ўὸ is time, ὃ  is 
the collector area, Ὕ  is the minimum 
acceptable  hot   water  temperature, Ὕ  is  the  
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mains  water  temperature, Ὕ  is  the  monthly 
average ambient temperature, ὒ is the monthly 
heating load or demand, †‌ is the normal 
incident energy absorbed by collector, †‌ is 
the monthly average value of absorbed over 
incident solar radiation, Ὄ is the monthly 
average daily total radiation on a tilted 
collector surface, and ὔ is the number of days 
in a month. The fraction of annual load 
supplied by solar energy system, Ὂ, is 
calculated by [19]: 

Ὂ  
ВὪὒ

Вὒ
 

(10) 

where Ὢ is the monthly solar fraction. 
To estimate such an optimal design, 

different collector area as a most effective 
parameter, storage volume and collector angle 
were manipulated and analyzed economically. 
It should be noted that all other parameters 
were kept constant. 
 

3.3. Probability distribution functions 
 
In most of the economic analyses, parameters 
such as interest rate, inflation, and cost of 
equipment used or energy produced are 
assumed to be constant, however, in long term 
economic analysis of a system, the uncertainty 
of variables and system should be considered. 
Therefore, a proper model should be 
developed to estimate inconstant parameters. 
When a forecasting model is developed (any  
model that plans ahead for the future) certain 
assumptions need to be made. These 
assumptions can be about the investment 
return on a portfolio, the cost of a construction 
project, or how long it will take to complete a 
certain task. Because these are projections 
into the future, the best which can be done is 
estimate the expected value. 

In this study, inflation rate was considered 
inconstant. The inflation rate significantly 
affects investment return and subsequently 
affects the investor’s decision making. The 
inflation rate of fuel cost in future was 
estimated based on probability distribution 
function estimated from historical data of fuel 
cost in the past 40 years. 
 

3.4. Monte Carlo implementation 
 
Monte Carlo method is a statistical sampling 
method that works with random components 
as input variables subjected to uncertainties, 
and after several iterations presents a set of 
results in terms of probabilities [6]. 

 Selecting a probability distributions 
function and a good random number sequence 
generator are very important in the MCM. 
Also, the number of iterations plays an 
important role in the convergence of the 
method because as the number of iterations 
increases, the mean and the standard deviation 
of the samples tend to the average and the 
standard deviation of a normally distributed 
function [6]. 

The Monte Carlo method is used to 
estimate probability function of life cycle 
solar saving and payback time based on 
probability distribution function of the 
inflation. The expected value of the Monte 
Carlo results was then subjected to an 
optimization algorithm. The expected value of 
a discrete random variable with values of ὼ 
and probabilities of ὴ was calculated by the 
following equation: 

Ὁὢ ὼ ὴ 
(11) 

 
3.5. Optimization method  

 
A wide variety of evolutionary algorithms 
(EAs) have been used to solve different types 
of optimization problems. Particle swarm 
optimization (PSO) algorithm, one of the 
major evolutionary global optimization 
algorithms, was used to minimize the 
objective function (Ὢὼ) since it has shown a  
high convergence rate in multivariable 
problems [20, 21, and 22]. 

ÍÉÎὪὼ 

ὼɴ ὛṒᴙ  

(12) 

The PSO algorithm, first proposed by 
Kennedy and Eberhart (1995), starts with a 
randomly selected initial population and then 
successively evolves the individuals in a 
swarm: 

ὼ ὼ ὺ 
(13) 

ὺ ὧὺ ὧὶἆὼ ὼ
ὧὶἆὫ
ὼ  

(14) 

where ὼ is the position of an individual 
particle, ὺ is the velocity that determines the 
displacement of the particle, Ὥ is the index for 
current iteration, ὧ is the inertia weight, ὧ 
and ὧ are the acceleration constants that 
control the influence  of  each of  the  velocity  
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components, ὶ and ὶ are random vectors 
with the dimensionality of the search space, ὼ 
is the particle's best-ever position, Ὣ is the 
swarm's best-ever position, and ἆ stands for 
element-by-element vector multiplication. In 
other words, the position of an individual 
particle is updated by a displacement that 
depends on the particle's velocity of previous 
iteration, the best previous location of the 
particle (local best, pbest) and the best-ever 
location of the particle among all particles 
(global best, gbest) [19, 20]. 

However, the particles tend to move outside 
of the feasible boundary in the first few 
iteration [19]. Therefore, handling boundary 
constraints is required to achieve the best 
performance with PSO. Several methods for 
handling boundary constraints including 
random, reflecting, and absorbing methods 
have been proposed in the literature [19]. In 
this study, we have bounds on the values of 
the estimated parameters. In order to handle 
these bounds, when the particle flies outside 
of the boundary, the calculated displacement 
is divided by a factor, ὦ, which is dynamically 
modified until the particle lies inside the 
boundary based on the following equations: 

ὼ ὼ ὺȾὦ  

ὦ ‗ ὦ  

(15) 

where ‗ is a constant value and is a problem 
dependent parameter. The algorithm flowchart 
of this method is exhibited in Figure 3. 
 

3.6. Case study 
 
A domestic solar water heating system in Los 
Angeles was considered as a case study to 
show the performance of the proposed 
method. Los Angeles (latitude 33.93o) was 
chosen because its monthly average radiation 
is good and, consequently, it is economically 
feasible. 

This method was used to optimize the 
efficiency of the solar system as well as 
investment return. The characteristic 
parameters of the collector are shown in Table 
1. 

The life time of this system is 20 years and 
70% of the initial cost is covered by a 10-year 
mortgage at an interest rate of 7% and at the 
end of the system life, the system will be sold 
for 30% of its original value. The general 
market discount rate is 8%. The maintenance, 
insurance, and parasitic energy costs, as well 
as property tax are  not  considered.  Also,  the  

 

Initial position guess, 

initial velocity guess, local bests calculation, global 

best is set to the best local best             

Update par ticles position

Calculate local best and global best

Update par ticles velocity

Position is in the boundary?

Objective cr iter ia met?

Global best is the solution

Yes

Yes

No

No

 
Fig. 3. PSO algorithm flowchart 

 
fuel costs are expected to change at uncertain 
inflation rate per year. The results of this method 
are then compared with those of a usual method 
in which inflation is considered to be constant at 
6.57% (average of past 45 years). 
 
4.Results and Discussion 
 
The normal distribution of inflation obtained by 
curve   fitting   of  inflation  in  past  45  years  is  
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shown in Fig.4. It should be noted that the 
natural gas price from 1970 to 2014 (45 years) 
was used to calculate inflation rate in the past 
years [5].  

The distribution function of life solar saving 
was then calculated. The PSO algorithm with 
20 particles was used to calculate the optimal 
collector area, collector angle, and storage 
volume resulted in maximum expected value 
of life solar saving distribution function. The 
optimal parameters are presented in Table 2. 

It should be noted that the parameters were 
subjected to lower and upper boundaries 
presented in Table 3. Also, optimal  values  of 

 collector area, collector slope, and storage 
capacity were evaluated assuming constant 
inflation rate of 6.57% and presented in Table 
2. As presented in this table, the optimal 
collector area and collector slope for 
inconstant inflation rate are higher than those 
for constant inflation rate. However, there is 
insignificant difference between the storage 
capacities of both scenarios.  

To better understand the differences 
between the constant and inconstant inflation 
cases, the optimal system designs of both 
scenarios were compared. Two optimum 
systems    obtained   from   the   constant   and  

 
Fig. 4. Normal distribution of inflation generated by curve fitting 

 
 

Table 1. Optimal designs for two scenarios 

Inflation collector area collector slope Storage capacity 

Constant 12 40 100 

Inconstant 17 42 101 

 
 

Table 3. Lower and upper boundaries of manipulated parameters 

Factors Lower Boundary Upper boundary Unit 

Collector area 10 30 Í  

Collector angle 30 60 Ј 

Storage volume 100 150 ÌȾÍ  
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inconstant cases were compared. The 
distribution of life solar saving for inconstant 
inflation optimal design is shown in Fig.5. 
The mean value of life solar saving is 
approximately 9930 USD. Also, the 
distribution of payback time for this scenario 
is presented in Fig.6. As shown in this figure, 
the average payback time is 4.1138 years. 

In the next step, the probable inflations in 
future, predicted by previous inflation data, 
were used to analyze optimal system which 
was obtained from the constant inflation 
analysis. 

 The distribution of life cycle solar saving 
for constant inflation optimal design is shown 
in Fig.7. The mean value of life cycle solar 
saving is approximately 9170 USD. It can be 
concluded that inconstant inflation method 
increased life cycle solar saving by 7.6% 
compared to constant inflation case. 

According to the objective function, 
maximizing life cycle solar saving, it was 
predictable that life cycle solar saving in the 
constant inflation case is less than the 
inconstant one. 

 
 

 
Fig. 5. Life cycle solar saving distribution for inconstant inflation- optimal design 

 

 
Fig. 6. Distribution function of payback time for inconstant inflation- optimal design 

 
 



Samaneh Kasiri et al. / Energy Equip. Sys. / Vol. 5/ No.3/Sep. 2017 321 

 

 
Fig. 7. Life cycle solar saving distribution for constant inflation- optimal design 

 
The optimal design in the case of inconstant 

inflation is investigated in more detail since it 
showed better results compared to the optimal 
design of constant inflation case. As shown in 
Fig.8, the life cycle solar saving is in the 
range of 4900 to 14300 USD with 70% 
certainty and the probability of being less than 
4900 or more than 14300 USD is going to be 
15%. Also, as shown in Fig.9, payback time is 
in the range of 3 to 5 years with 80% certainty 
and the probability of being more than 5 years 
is 16%. These results can be used in decision 
making since they are most probable, more 
reliable,   and   safer   results.   The   decisions 

 according to these probable results can be 
much more useful and safer. The forecasting 
is going to be based on a range of possible 
values, instead of a single value and using a 
range of possible values gives a more realistic 
picture of what might happen in the future. 
 
5. Conclusion  
 
A new method for economic optimization of 
solar systems was proposed. In this study, life 
cycle analysis and risk analysis using Monte 
Carlo method were used to calculate optimal 
design of a  bench  mark  solar  water  heating  

 

 
Fig. 8. Distribution function and integrated probability of life cycle solar saving for inconstant inflation- optimal design 
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Fig. 9. Distribution function and integrated probability of payback time for inconstant inflation- optimal design 

 
system. Despite the conventional economic 
methods, in which inflation was assumed 
constant, in this method, a probability 
distribution was considered for inflation. The 
probability distribution of life cycle solar 
saving and payback time were then estimated 
by the Monte Carlo method. The expected 
value of the life cycle solar saving was 
considered as the objective function and the 
optimal collector area, collector angle and 
storage volume were estimated. This optimal 
design was then compared to the optimal 
design of the conventional method 
considering constant inflation. 

The results showed that considering 
inconstant inflation leads to 39% increase in 
solar collector’s surface area while optimal 
values of the collector slope and storage 
capacity are not changed significantly. Also, 
the mean value of the life cycle solar saving in 
the optimal design of inconstant inflation case 
is improved by 7.6% compared to that of 
constant inflation rate. Moreover, the payback 
time is estimated between 3 and 5 years with 
82% certainty, while life cycle solar saving is 
evaluated between 3900 to 11700 USD with 
72% certainty which shows more uncertainty 
in estimation of life cycle solar saving 
compared to the payback time. 
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