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ABSTRACT    

Electroosmotic is one of the four electrokinetic phenomena that is 
formed by applying an electric field to an ionized electrolyte near 
the charged dielectric surface. Due to the applying of this electric 
field change the arrangement of ions within the electrolyte, and 
eventually a region called the Electric double layer is formed near 
the surface. The thickness of this layer is approximated by the 
Debye length. In this study, the Because the Reynolds number in in 
microfluidic devices is usually very low. Therefore, achieving to 
sufficient mixing in electroosmotic microchannel flow has been a 
challenge. For this purpose, a non uniform distribution of surface 
potential for flow mixing is considered. This type of charge 
distribution is very efficient for mixing purposes by creating 
circulations in the microchannel. Lagrangian description is used to 
solve the governing equations. The method used in this research is 
the constant density weakly compressible particle hydrodynamics 
method. In order to improve the mixing, the effect of changing the 
Debye length has been analyzed. The results show that increasing 
the Debye length causes smaller vortexes to be produced and 
mixing efficiency is reduced. 
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1. Introduction 

The electroosmotic phenomenon is crucial in 
the design and understanding of concepts such 
as reagents for laboratory chip systems and the 
analysis of biological systems. Because the 
reactions associated with these systems occur 
at the micron and even nanoscale, rapid mixing 
of samples is essential. Electroosmotic flow is 
critical in the design of Lab on a Chip systems 
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and is widely used to transfer and mix liquids 
in micro and nanofluid systems. Pure 
electroosmotic flow in a microchannel is a 
smooth flow with no rotation and since it is a 
slow flow, there is no turbulence to stir the 
fluid. In microfluidic systems, it is very 
difficult and costly to use moving components 
to create turbulence. Therefore, mixing has 
always been a challenge in electroosmotic 
microscale systems. In general, microchannels 
are divided into active and inactive categories 
to increase mixing [1]. Passive micromixers 
usually use different geometric shapes to 
increase the contact surface of the mixed 
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liquids and the main problem with passive 
mixing is the complexity of microscale 
fabrication. In active micromixers, an external 
driving force is used to create the mixture [2]. 
Recently, electroosmotic forces have been 
widely used in micromixers to control the 
movement of liquids. The characteristics of the 
electroosmotic flow in a microchannel depend 
on the nature of the potential of the channel 
surface, whether uniform or nonuniform.  

Preliminary studies have been performed on 
electroosmotic flows with uniform surface 
electric potentials. Ajdari et al. [3] investigated 
the phenomenon of electroosmosis with 
nonuniform surface potential. They found that 
circulatinal zones by applying the surface 
potential opposite to the surface charge were 
created. Ren et al. [4] investigated the 
electroosmotic flow in circular microchannels 
by changing the axial pitch of the surface 
potential and observed perturbation velocity 
profiles in the flow. Erickson and Li [5] 
investigated the rotational regions in the flow 
in T-shaped micromixers with nonuniform 
surface potentials. They found that the rotation 
region is larger and stronger when the potential 
for a heterogeneous surface is equal to and 
opposite to a homogeneous surface. The 
velocity and potential distributions near the 
jump site in the surface potential have been 
analytically investigated by Yariv [6]. Fu et al. 
[7] obtained a stepwise change Based on the 
Nernst Planck equation for ion distribution in 
surface potential that causes a significant 
change in the velocity and pressure 
distribution. Lee et al. [8] analyzed the 
electroosmotic flow with nonuniform potential 
in a microchannel with assuming zero 
volumetric electric force outside the electric 
double layer. Tian et al. [9] observed that 
excellent mixing through nonuniform surface 
potential in microchannels may lead to very 
poor mass transfer. The effect of reservoirs at 
the beginning and end of a microchannel has 
been investigated by Mirbozorgi et al. [10]. 
Their results show that an inverse pressure 
gradient is created in the microchannel due to 
pressure drops due to the presence of 
reservoirs. Using different potentials in the 
horizontal electric field, different flow patterns 
can be created in the mixing chamber. The 
time dependent electroosmotic flow distributed 

by an alternating flow electric field with 
surface potential heterogeneity along the 
microchannel walls was investigated by Luo 
[11]. Bhattacharyya and Nayak [12] showed 
that the patch potential may increase the 
mixing of liquids in microchannels. 
Bhattacharyya and Nayak [13] found that 
surface geometry changes and surface potential 
heterogeneity cause more intense convection 
effects in nanochannels. Using experimental 
methods, Sun and Shie [14] experimentally 
investigated the performance of divergent intra 
microchannel mixing under electroosmotic 
flows with periodic potential and identified the 
optimal phase difference as well as the optimal 
half angle of divergence for the best mixing 
efficiency. Jain and Nandakumar [15] have 
used numerical optimization method to study 
different geometry formulations with different 
charge patterns and for each case have shown 
the optimal charge pattern for the maximum 
mixing rate. Sadeghi et al. [16] studied heat 
transfer in electroosmotic flows with excitation 
pressure and found that when the ratio of width 
to height of the channel increases, the Nusselt 
number generally increases. Cheng et al. [17] 
simulated electroosmotic mixing with periodic 
potentials using the Helmholtz Smolokowski 
model and concluded that vortexes induced by 
electroosmotic flows increase the quality of 
mixing at low frequencies while at the same 
frequency, high mixing is reduced. 

In this research, the electrokinetic 
micropump have been investigated. 
Electrokinetichetic micropumps can be 
associated with pressure gradients, in which 
case they are referred to as electroosmootic / 
pressure driven micropumps, or they can be 
caused only by electrokinetic effects. Laplace, 
Poisson-Boltzmann and Momentum two-
dimensional equations are solved numerically 
in a rectangular microchannel. Solving the 
nonlinear exponential term associated with the 
hyperbolic sine function in PoissonBoltzmann 
equation has always been a challenging task. In 
this study, it has been tried to solve this 
challenge by using the smooth particle 
hydrodynamics method and eliminating 
network dependencies. Because achieving 
higher mixing efficiency is one of the goals of 
micromixers, the effect of changing the Debye 
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length parameter on mixing has been 
investigated. 

2. Geometry of case study 

Figure 1 shows the proposed geometry for the 
Electroosmotic microchannel. This two 
dimensional microchannel has a height of 2H 
and a length of L. It is exposed to the external 
electric field E0 at both ends. The 
microchannel consists of a nonuniform charge 
distribution in the walls and its length is 
divided into 7 equal parts. Red lines show the 

negative charge nψ =- ζ  with length  
1

7
L, and 

blue lines show the positive charge ψp=+|ζ| 

with length  
1

7
L.Also the patches, ψ0=0 are 

without charge and have a length of 
2

7
L at the 

inlet and outlet of the channel so that the mid 

length of charged patches is  
1

7
L.  

The microchannel is filled with an 
electrolyte solution which is assumed to be a 
Newtonian fluid with constant  properties.  The 

 
 

parameters and constants used in this problem 
are given in Table 1. 

 
3. Governing equations and boundary 

conditions  
 
3.1. Poisson-Boltzmann equation 

 
By placing the charged surface in the vicinity 
of the electrolyte solution, the surface reaction 
between the electrolyte ions and the adjacent 
surface causes the surface to become charged. 
The forces of attraction and repulsion between 
surface charges and the electrolyte change the 
arrangement of ions within the electrolyte, and 
eventually a region called the electric double 
layer is formed near the surface. In other 
words, the charged dielectric surface forms this 
region by absorbing ions opposite to its charge. 
As a result, there is a distribution of ions 
opposite the surface charge in the electric 
double region, while outside the electrolyte 
region   is  neutral.  By   applying   an  external  

 

 

Fig. 1. The modelled two dimensional Electroosmotic microchannel  

Table 1. Specifications of parameters and constants used in the modelled electroosmotic microchannel  

Fluid density 𝜌  3

kg
1000

m
 

Permittivity of vacuum 𝜖0  12  F8.854 10
m

  

Dielectric constant of the solution 𝜖𝑟 78.5 
Valence z 1 
Electron charge e 191.6 10   C  

Boltzmann constant 𝑘𝑏 23 J1.38 10   
k

  

Absolute temperature 𝑇 300 K  
External electric potential at the inlet 𝜑𝑖𝑛 10 v 
External electric potentialat the outlet 𝜑𝑜𝑢𝑡 0 v 
Microchannel Height 𝐻 10  μm  

Microchannel Length 𝐿 140  μm  

Diffusion coefficient D  212 10
s

m  
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electric field on this electric double layer, a 
force is applied to the charges in this layer and 
this force causes the ions to move causing the 
fluid flow in the electric double layer. Finally, 
due to friction between the fluid layers, even the 
outer fluid flows from the electric double layer. 
This type of flow is called electroosmotic flow. 
Distribution of the electric potential in the 
solution due to dual electric layer ψ is described 
by Poisson-Boltzmann equation. 

2

0

f

r





 

ò ò
 (1) 

where the ψ potentials of the electric double 
region, ϵr and ϵ0 represent the dielectric 
constants of the solution and Permittivity of 
vacuum, respectively. ρf is the free charge 
density is given: 

   f ze n n     (2) 

n+ and n- show the concentration of positive 
and negative ions, z represents the valance and 
e represents electron charge. The free charge 
density can be expressed in terms of the 
Boltzmann distribution, which for a symmetric 
solution n+=n-=n using the Boltzmann 
distribution for ionic concentration: 

2 n sinhf

b

ze
ze

k T





 
   

 
 (3) 

where 𝑛∞ is bulk ionic number concentration, 
𝑘𝑏 is the Boltzmann constant, T is the absolute 
temperature. By placing Eq.(2) in Eq.(1) and 
using the Boltzmann distribution for the ionic 
species, the well-known Poisson Boltzmann 
equation is obtained as follows: 

2 2

2 2

0

2
  sinh )

r B

zen ze

x y k T

  
  

   
   ò ò

 (4) 

The thickness of the electrical double layer 
is approximated by the debye length of 𝜆𝐷. The 
Debye length is a characteristic of the 
electrolyte solution and depends on the molar 
concentration of the fluid, and its thickness can 
be estimated by the Debye–Huckel parameter 
𝜆𝐷

−1.  
1/2

2 2
1

0

21
   D

D r B

z e n

k T




 
 

  
 ò ò

 (5) 

To solve the Poisson-Boltzmann equation, 
the potential flux at the input and output is 
assumed to be zero. 

  0                       / 0          

                      / 0          

inlet x x

outlet x L x





   


   
 (6) 

And the pattern of zeta potential distribution 
on the microchannel wall is (as shown in Fig. 
1): 

 

 

                                       

                              

y H x

y H x

 

 

  


   
 (7) 

3.2. Laplace equation 

 In electroosmotic flows, the main idea is that 
by applying an external electric field such as 𝜑 
to the electric charge of the electric double 
layer, the existing electrolyte can be moved. 
The application of this external electric field to 
a charged fluid results in the creation of a pure 
electric force 𝜌𝑓𝐸0, which is called the Lorentz 
force, in which 𝐸0 is the external electric field 
strength 𝐸0 = 𝜕𝜑 𝜕𝑥⁄ . The potential of an 
applied electric field 𝜑 is obtained by solving 
the Laplace equation. 

2 0   (8) 

For an external electric field, a constant 
potential 𝜑𝑖𝑛 in is given at the inlet of the 
channel and a constant potential 𝜑𝑜𝑢𝑡  at the 
outlet of the channel is given, and the potential 
flux 𝜕𝜑 𝜕𝑥⁄  is considered zero at the channel 
walls. 

3.3. Continuity and momentum equations  

When an electric current is applied the electric 
double layer, Electroosmotic flow is obtained. 
Two dimensional, incompressible, and laminar 
flow is intended for a Newtonian fluid. The 
governing equations are the mass conservation 
equation, the momentum equation, the state 
equation, and the concentration equation, 
respectively. 

.
d

V
dt


    (9) 

2

f

dV
V g P E

dt
         (10) 

 2

0 0P P C      (11) 
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2dc
D c

dt
   (12) 

In Eqs.(9-12), ρ is the density, V is the 
velocity, P is the pressure, g is the gravitational 
acceleration, μ is the viscosity of the fluid, D is 
the mass diffusion coefficient, c is the 
concentration and C is the sound velocity, and 
d represents the material derivative. 𝜌𝑓𝐸  is the 
volumetric force caused by the application of 
an electric field acting on a fluid equal to: 
E    (13) 

where 𝛷 is the total potential due to the linear 
sum of the potential of the electric double layer 
ψ and the potential of the applied electric field 
φ (i.e. 𝛷 = 𝜓 + 𝜑). At the channel inlet, to 
eliminate the frictional and shape change 
effects, a parabolic velocity distribution with a 
maximum velocity 𝑢𝑖𝑛 is used, which 
represents a fully developed flow rate. To solve 
the momentum equation, the vertical and 
horizontal velocities in the channel walls are 
assumed to be zero. A fully developed 
condition is used for the velocity at the channel 
outlet.  

 
2

  0 1        ,   0

  / 0    ,   / 0

in

u y
inlet x v

Hu

outlet x L u x v x


 
    

 
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



 

 (14) 

There is no slip in the channel walls and the 
nonslip boundary condition is used (𝑢 = 𝑣 = 0 

in 𝑦 = ±𝐻). 

In order to evaluate the mixing quality, the 
mixing efficiency is defined, which shows the 
mixing performance at each cross section of 
the microchannel and is defined as follows. 

 
0

1

H

H

H

H

c c dy
x
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
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

 
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  
 




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where 𝑐0 and 𝑐∞ are the concentrations of the 
species not fully mixed and completely mixed, 
respectively.  

4. Smooth particle hydrodynamics method 

4.1. Formulation 

The smooth particle hydrodynamics (SPH) 
approach is used to solve the governing 
equations of the flow. SPH is a mesh free 
Lagrangian discretization scheme in which the 

continuous environment is discretized with a 
limited number of computational points. SPH 
uses an integral representation method in a 
weak form using a smoothing function with an 
interpolation domain called the support 
domain. If f is an arbitrary function in the 
support domain 𝛺 we can write: 

       ,   f r f r W r r h dr


     (16) 

where 𝑟  and 𝑟′ are the position vectors and the 
sub integral variable, W is called the 
smoothing or kernel function, and h is called 
the smooth length. Equation (16) can be 
approximated as a series of discretization in the 
domain Ω. 

   
1

,  j j

j

f r f W r r h


   (17) 

In this study, the fifth-order Wendland 
kernel is used for the kernel function [18]. This 
recent research has shown that using this 
function causes to the required computational 
accuracy and cost for most cases. 

 
   

4

2 1 4 1      0 1
, 7 /

            0                      1

s s s
W r h h

s

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 



 (18) 

The first derivative of an arbitrary function 
f in the particle i can be approximated using 
the following general form. 

 i ij j i

j

f G f f    
(19) 

where j represents the neighboring particles of 
the particle i.  𝑓𝑗 is the value of f in particle j, 
and  𝐺𝑖𝑗 is a weight function that shows the 
contribution of particle j to particle i. The 
values of 𝐺𝑖𝑗 are a function of the relative 
position vector of the neighbors of particle i, ie 
𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖.  

.ij j i ijG B W   (20) 

Here 𝜔𝑗 is an infinitesimally small volume 
for a particle j and is defined as 𝜔𝑗 = 𝑚𝑗 𝜌𝑗⁄ , 
which in this study has a constant value for all 
SPH particles. Also, 𝑊𝑖𝑗 = 𝑊(𝑟𝑖𝑗 , ℎ) is athe 
smoothing or kernel function which is a 
smoothed version of the Dirac Delta function 
and is a positive value for 𝑟𝑖𝑗 = |𝑟𝑖𝑗| < ℎ [19]. 
Tensor B is also the first order normalizing 
tensor previously introduced by Bonet and Lok 
[20] to correct the first order derivative of the 
kernel function. 



388 Mojtaba dehghanzadeh Bafghi et al./ Energy Equip. Sys. / Vol. 9/No.4/Dec. 2021 

1

i j ij ij

j

B W r



 
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 
  (21) 

The second order derivative uses the same 
pattern as the first derivative but with different 
weights [21]. 

 . i ij j i

j

f Q f f    (22) 

As described in [21], a second-order 
Laplacian consistent scheme can be 
expressed as:  

λˆ2 :ij i ijQ B  (23) 

where, 

2λ . .
ij

ij j ij e i ij

ij

e
W S B W

r


 
    

 
 

 (24) 

where /ij ij ije r r   and
2e j ij ij ij

j

S e e W  . Also 𝐵̂𝑖 is 

the normalized Laplacian tensor given by the 

following equation: 

ˆ :i iB Z I  (25) 

where in: 

λ r ri ij ij ij

j

Z   (26) 

4.2.  Constant density weakly compressible 
particle hydrodynamics for 
electroosmotic flows  

First, the external potential field φ is solved. 
2 0   (27) 

To solve the Poisson Boltzmann equation, 
the Taylor expansion of the sinh function has 
been used. The main challenge in all numerical 
studies is the exponential nonlinearity of this 
term. Using the Taylor expansion, Eq.(4), 
Poisson-Boltzmann equation, is modified and 
discretized as follows. 

 
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1 1

1

. .
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zezen ze ze
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
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

ò

 
(28) 

The uppercase k shows the value calculated 
in the previous iteration and the uppercase k + 
1 shows the value in the new iteration. 
Inserting the Eq.(11) in Eq.(9) and 
rearrangements it is deduced that: 

2

1
.

dp
V

c dt
    (29) 

Here, a modified form of the algorithm is 
applied. The procedure is that first, the middle 
mean velocity field (𝑉̃) is estimated without 
using the pressure term. 

2
n

fn
EV V

V g
t


  



 
    

 

 (30) 

Combining Eq.(30) and Eq.(29), the 
following equation can be deduced: 

1
n

n P
V V



 
   (31) 

Then, by applying divergence to Eq. (31) 
and placing it in Eq.(29), then the new pressure 
is calculated by the following equation. 

1
2 .

.
n n nP P P

c V t
t




   
    

  

 (32) 

In the next step, the new speed is calculated 
using the following equation. 

1
1

n
n P

V V t



 
   (33) 

Equations (30) to (33) form a predictive 
corrective scheme similar to the methods 
explained in references [22] and [23] with 
some corrections and mathematical 
manipulations. The main difference here is that 
the density is assumed to be constant. This 
algorithm greatly alters the extreme 
fluctuations of the standard method of wickly 
compressible smooth particle hydrodynamics. 
Finally, the new position of the particles is 
calculated as follows:  

1 1n n nr r V t     (34) 

If the mass transfer equation needs to be 
solved, Eq.(12) is solved as follows. 

1 2n n nc c c t      (35) 

According to the idea of Shadloo et al. [24] 
at the end of each time step, all internal 
particles are displaced according to the 
following equation. 

3

0
i i ij

j ij

d
r V t e

r

 
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 
 

ò  (36) 

where 𝑑0 is the distance of the initial particles 
(from the reference point based on the 
Lagrangian description) and 𝜖 can take a value 
between 0 and 0.1. 
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After placing the particle in the new 
position, it is necessary to correct the values of 
other field variables as well. Hence, the 
expansion of the first sentence of the Taylor 
series is used as follows for other variables. 

.i i ir      (37) 

.i i ir      (38) 

.i i iV r V     (39) 

.i i iP r P     (40) 

.i i iC r C     (41) 

Virtual particles are used to apply boundary 
conditions. These particles have been used 
according to the design of Lee et al. [25]. 
These particles have a velocity equal to the 
velocity of the corresponding wall particles and 
also for the stationary wall, in the direction 
perpendicular to the wall, they have the same 
pressure equal to that of the wall particle. A 
numerical code has been implemented to solve 
electroosmotic flows based on the constant 
density weakly compressible particle 

hydrodynamics method. The solution 
algorithm is expressed in Pseudo code in Table 
2. 

5. Validation of results and independence of 
solution from the particle 

Accuracy of the program has been validated 
with a model that has already been solved 
analytically and numerically by Dutta and 
Beskok [26]. This model includes a two 
dimensional microchannel with a height of 2H 
and a length of 𝐿1 + 𝐿2 + 𝐿3. The length of the 
channel is divided into three parts. According 
to Fig. 2, the middle part contains a material 
that has some electroosmotic effects, while 
these effects are neglected for the beginning 
and end of the channel. The channel is filled 
with a Newtonian electrolyte fluid of constant 
density and viscosity. The height of the 
channel is 𝐻 = 10𝜇𝑚 and the length of each 
part of the channel is 𝐿1, 𝐿2, 𝐿3 = 31 𝜇𝑚. The 
geometry of this numerically modelled 
problem is shown in Fig. 2.   

 

Table 2. Summarizes the computational algorithm  

for each time-step n do 
find the neighboring particles; 

for each particle i  do 
compute 𝜑 using Eq. (27) ; 
compute 𝜓 using Eq. (28) ; 
compute 𝑉̃ using Eq. (30); 

end for 
for each internal particle i  do 
compute 𝑃𝑛+1 using Eq. (32); 

end for 
update pressure of wall particles; 

for each internal particle i  do 
compute 𝑉𝑛+1 using Eq. (33); 

end for 
for each internal particle i  do 
compute 𝑟𝑛+1 using Eq. (34); 

end for 
if  mass transfer is active then 
calculate 𝑐𝑛+1 using Eq. (35); 

end if 
for each internal particle i  do 

shift the position by ir evaluated from Eq. (36); 

correct the electric double layer potentials, external potential, velocity, pressure, concentration using 
Eqs. (37) to (41); 

end for 
end for 
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Fig. 2. Modeling of a two dimensional electroosmotic microchannel adopted from reference [26] 

 Velocity components in x and y directions 
are normalized with reference velocity 𝑈𝑟𝑒𝑓  

( i. e.  𝑈 = 𝑢 𝑈𝑟𝑒𝑓⁄  and 𝑉∗ = 𝑣 𝑈𝑟𝑒𝑓⁄ ) and the 
coordinates in the longitudinal and transverse 
directions are normalized with respect to half 
height of the channel H (i.e. (𝜉 = 𝑥 𝐻⁄  and 𝜂 =
𝑦 𝐻⁄ ). The reference velocity 𝑈𝑟𝑒𝑓   is 
calculated based on the Reynolds reference 
𝑅𝑒𝑟𝑒𝑓 = 0.005. Fig. 3 shows the axial 
dimensionless velocity in terms of 
dimensionless width at the center of the 
channel, i.e. 𝜉 = 4.5 for 𝑈𝑖𝑛 = 2. The 

compatibility of the solution results with the 
reference solution [26] is evident. 

Also, to investigate the convergence and 
solubility independence of the particle, the 
velocity distributions for three different 
particle distances ∆𝑥 = 4 × 10−7 ,  ∆𝑥 = 2.5 × 10−7 

 and ∆𝑥 = 2 × 10−7   have been examined. 
Considering these three particle distances, Fig. 
4 shows the numerical solution values of the 
dimensionless velocity distribution in the 
middle of the channel with 𝑈𝑖𝑛 = 2. These 
results show the velocity convergence at ∆𝑥 =

2 × 10−7 as compared to those results given in 
the reference solution [26].   

 

 Fig. 3. Dimensional velocity distribution in the center of the channel for different 𝑼𝒊𝒏. These numerical results 
are compared with those given in the reference [26]. 

 

 

Fig. 4. Dimensional velocity distribution in the center of the channel for 𝑼𝒊𝒏 = 𝟐 for the three particle spacing 

∆𝒙 = 𝟒 × 𝟏𝟎−𝟕 ,  ∆𝒙 = 𝟐. 𝟓 × 𝟏𝟎−𝟕  and ∆𝒙 = 𝟐 × 𝟏𝟎−𝟕    and comparison with reference solution [26]. 
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6. Results and Discussion 

The geometry shown in Fig. 1 is solved 
numerically. For a dimensionless solution, as 
in the steps in validating the results, the 
parameters are dimensionless and Reynolds's 
base is 𝑅𝑒𝑟𝑒𝑓 = 0.005. The thickness of the 
electric double layer also affects the flow. As 
mentioned earlier, the approximate thickness of 
the electric double layer is determined by the 
Debye length. A strong electrolyte solution has 
a higher molar concentration compared to that 
of a weak electrolyte solution with a thinner 
Debye length. To investigate the effect of the 
thickness of the electric double layer on the 
flow, a comparison was made between the two 
Debye lengths 𝜆𝐷 = 2𝜇𝑚 and 𝜆𝐷 = 0.78𝜇𝑚 

for the zeta potential ζ= −11 𝑚𝑣. The 
maximum velocity at the center of the 
microchannel is assumed to be 𝑢𝑖𝑛 =
0.15 𝑚𝑚/𝑠. Fig. 5 shows a dimensionless 
horizontal velocity contour with streamlines 
for the two Debye lengths 𝜆𝐷 = 2𝜇𝑚 و   𝜆𝐷 =
0.78𝜇𝑚  and a zeta potential ζ = -11 mv. As 
shown in the figure, the shorter Debye length 
results in higher velocity values. Two 

symmetric vortexes are created due to the 
asymmetric effects of the potential cgarge on 
the surface. Vortexes with shorter Debye 
lengths have achieved positive and negative 
velocities with higher values. These 
phenomena, result in greater mixing of flow 
swith stronger electrolytes or give thinner 
thicknesses of the electric double layer. 

Figure 6 shows the potential distribution of 
an electric double layer at position ξ=5 for the 
two Debye lengths in question. As it is observed 
from the figure, the slope of the potential change 
for 𝜆𝐷 = 0.78𝜇𝑚 is steeper than that of 
obtained for 𝜆𝐷 = 2𝜇𝑚. This phenomenon 
results in a stronger electroosmotic force during 
the lower Debye because the electroosmotic 
force is directly related to the potential gradient. 
In the position of ξ=5, the upper patch has a 
negative charge (shown in red in Fig. 6) and the 
lower patch has a positive charge (shown in blue 
in Fig. 6). In the middle of the microchannel, the 
potential distribution is zero, indicating that 
there is no electroosmotic force in the middle of 
the channel.  

 

 

Fig. 5. Dimensional horizontal velocity contours with stremlines for potential ζ=-11 mv. a) 𝝀𝑫 = 𝟐𝝁𝒎 b) 𝝀𝑫 =
𝟎. 𝟕𝟖𝝁𝒎 
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Fig. 6. Potential distribution of the electric double layer at ξ=5 for  𝝀𝑫 = 𝟐𝝁𝒎 and 𝝀𝑫 = 𝟎. 𝟕𝟖𝝁𝒎 

Fig. 7 shows the dimensionless velocity 
contour in the vertical direction for the two 
Debye lengths 𝜆𝐷 = 2𝜇𝑚 and 𝜆𝐷 = 0.78𝜇𝑚. 
At the beginning of the channel, due to fully 
developed vertical flow, the vertical velocity is 
zero, but the flow is affected by electroosmotic 
forces when entering the first asymmetric patch 
of the charge and appears in the vertical 
direction to change the velocity profile and 
create a vortex. At the beginning of the 
microchannel, the velocity is in the vertical 
direction. When fluid enters the first patch, the 
velocity values are positive and upwards, and 
at the exit of the channel, the vertical velocity 

values are negative and downward. Then, at 
the entrance to the second patch, the opposite 
patch acts and causes a vortex in clockwise 
direction. The velocity values in the upper 
figure are plotted for 𝜆𝐷 = 2𝜇𝑚. They are 
lower than those shown in the lower figure for 
𝜆𝐷 = 0.78𝜇𝑚, indicating that the 
electroosmotic forces are more intense during 
the lower Debye, or in other words the 
thickness of the electrical double layer is 
thinner so that larger velocities are created and 
result in more intense mixing. 

 

 

Fig. 7. Dimensional vertical velocity contours with flow lines for zeta potential ζ=-11 mv. a) 𝝀𝑫 = 𝟐𝝁𝒎 b)  
𝝀𝑫 = 𝟎. 𝟕𝟖𝝁𝒎 
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Figure 8 shows a dimensionless vertical 
velocity profile in the longitudinal section at 
the center of the microchannel (𝜂 = 0) for the 
two Debye lengths in question. As shown in 
the figure, the maximum and minimum points 
related to the Debye length 𝜆𝐷 = 0.78𝜇𝑚 are 
superior to those of 𝜆𝐷 = 2𝜇𝑚, which 
indicates that the electroosmotic forces act less 
strongly for lower Debye length and the values 
of larger vertical velocities are greater than 
those achieved for greater Debye length. Due 
to the symmetry in the geometry and charge 

distribution, the symmetry in the vertical 
velocity profiles is also evident. 

Figure 9 shows the mixing efficiency for 
the two Debye lengths  𝜆𝐷 = 2𝜇𝑚 and 𝜆𝐷 =
0.78𝜇𝑚. As it is evident from the figure, the 
flow in the microchannel mixes more with a 
smaller Debye length and the mixing efficiency 
increases by about 38% at the channel outlet. It 
may be concluded that the mixing increases 
with decreasing in Debye length or in other 
words the thickness of the double electric layer 
is reduced for this condition. 

 

Fig. 8. Dimensionless vertical velocity profile in the middle longitudinal section of the microchannel with 
potential ζ=-11 mv.  for 𝝀𝑫 = 𝟐𝝁𝒎 and 𝝀𝑫 = 𝟎. 𝟕𝟖𝝁𝒎 

 

 

Fig. 14. The mixing efficiency with zeta potential ζ=-11 mv for the two Debye lengths 𝝀𝑫 = 𝟐𝝁𝒎 and 𝝀𝑫 =
𝟎. 𝟕𝟖𝝁𝒎 
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7. Conclusion  

Two dimensional microchannels with 
asymmetric charge distribution under the 
simultaneous effects of pressure gradient and 
electroosmotic force have been studied. Flow 
characteristics are obtained by solving the 
Poisson Boltzmann and Navier-Stokes 
equations based on Lagrangian description and 
using the constant density weakly compressible 
particle hydrodynamics method. Distributing 
the potential charge with opposite signals on 
the surface creates a reverse electroosmotic 
force, resulting in circulational zones in the 
flow. The results show that increasing the 
Debye length or in other words increasing the 
thickness of the electric double layer produces 
weaker horizontal and vertical velocity fields 
which also reduces the effect of mixing. It is 
also concluded that with increasing the length 
of the Debye, the gradient decreases the ψ 
potential so that weak electroosmotic forces are 
obtained. 
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