Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

Document Type : Research Paper

Authors

Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran

Abstract

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stator, and stator slot shape. For design optimization, the force ripple can be considered as the objective function and geometric parameters can be considered as design variables. In this paper, the distribution of magnetic flux density in the air gap is calculated using an analytical method, then detent force is computed by integrating the Maxwell stress tensor; that is expressed in terms of flux density distribution on the slot face and end face of the iron core of moving parts. The analytical result is compared with FEM simulation to verify the model. The geometric parameter effect on the detent force is investigated. Finally, using genetic algorithm, the optimum design of a linear synchronous motor with minimum detent force is obtained.

Keywords


[1] Kwon Y.S., Kim W.j., Detent-Force Minimization of Double-Sided Interior Permanent-Magnet Flat Linear Brushless Motor, IEEE Transactions on Magnetics (2016) 52: 8201609-8201609.
[2] Gieras J. F., Piech Z. J., Tomczuk B. Z., Topologies and Selection in Linear Synchronous Motors, 2nd edition (2012) 1–22.
[3] Ma M., Zhang J., Yu J., Zhang H., Jin Y., Analytical Methods for Minimizing Detent Force in Long-Stator PM Linear Motor Including Longitudinal End Effects, IEEE Transactions on  Magnetics(2015) 51: 8204104- 8204104.
[4] Wei Qian, T. A. Nondhal, Mutual torque ripple suppression of surface-mounted permanent magnet synchronous motor,  International Conference on Electrical Machines and Systems  (2005) 1: 315 – 320.
[5] Youn S. W., Lee J. J., Yoon H. S., Koh C. S., A New Cogging-Free Permanent-Magnet Linear Motor, IEEE Transactions on Magnetics (2008) 44.: 1785–1790.
[6] Jung I.S., Hur J., Hyun D. S., Performance Analysis of Skewed PM Linear Synchronous Motor According to Various Design Parameters, IEEE Transactions on Magnetics (2001) 37:373653–3657.
[7] Zhu Y. W., Koo D. H., Cho Y. H., Detent Force Minimization of Permanent Magnet Linear Synchronous Motor by Means of Two Different Methods, IEEE Transactions on Magnetics (2008) 44: 4345–4348.
[8] Hwang C. C., Li P. L., Liu C. T., Optimal Design of Permanent Magnet Synchronous Motor with Low Cogging Force, IEEE Transactions on Magnetics (2012) 48:1039–1042.
[9] Tavana T.N.R., Shoulaie A., Pole-Shape Optimization of Permanent Magnet Linear Synchronous Motor for Reduction of Thrust Ripple, Energy Conversion and Managemen (2011) 52:349–354.
[10] Bianchi N., Bolognani S., Cappello A. D. F., Reduction of Cogging Force in PM Linear Motors by Pole-Shifting, Proceedings - Electric Power (2005) 152: 703–709.
[11] Lim K. C., Woo J. K., Kang G. H., Hong J. P., Kim G.-T., Detent Force Minimization Techniques in Permanent Magnet Linear Synchronous Motors, IEEE Transactions on Magnetics (2002) 38:1157–1160.
[12] Inoue M., Sato K., An Approach to a Suitable Stator Length for Minimizing the Detent Force of Permanent Magnet Linear Synchronous Motors, IEEE Transactions on Magnetics (2000) 36: 1890–1893.
[13] Inoue M., Sato K., An Approach to a Suitable Stator Length for Minimizing the Detent Force of Permanent Magnet Linear Synchronous Motors, IEEE Transactions on Magnetics (2000) 36:1890–1893.
[14] Mikail R., Iqbal H., Sozer Y., Islam M., Sebastian T., Torque Ripple Minimization of Switched Reluctance Machines through Current Profiling, IEEE Transactions Applications (2013)  49: 1258 – 1267
[15] Zare M.R., Marzband M., Calculation of Cogging Force in Permanent Magnet Linear Motor Using Analytical and Finite Element Methods, Majlesi Journal of Electrical Engineering (2010)  4:42-47.
[16] Zhu L., Jiang S. Z., Zhu Z. Q., Chan C. C.,  Analytical Methods for Minimizing Cogging Torque in Permanent-Magnet Machines, IEEE Transactions on Magnetics (2009)  45: 2023–2031.
[17] Li A. L., Ma B. M., Chen C. Q., Detent Force Analysis in Permanent Magnet Linear Synchronous Motor Considering Longitudinal End Effects, in Proceedings of the 15th International Conference on Electrical Machines System, Sapporo, Japan  (2012) 1–5.
[18] Binns K. J., Lawrenson J., Analysis and Computation of Electric and Magnetic Field Problems, Pergamon Press (1973) 95.
[19]Jacek F. Gieras, Mitchell W., Permanent Magnet Motor Technology - Design and Applications, Marcel Dekker Incorporated (1973) 88.