Solar cell efficiency enhancement using a hemisphere texture containing metal nanostructures

Document Type: Research Paper


School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran


One major problem of the conventional solar cells is low conversion efficiency. In this work, we have proposed a new design including hemisphere texturing on top and metallic plasmonic nanostructure under the silicon layer to enhance the optical absorption inside the photosensitive layer.    The finite-difference time-domain (FDTD) method has been used to investigate the interaction of light with the proposed structure. The simulation results demonstrated that the designed structure gives rise to 40% light absorption enhancement and 27% solar cell efficiency enhancement compared to a simple cell structure. The hemisphere texturing acts as a light concentrator and results in local electric field enhancement inside the silicon layer, and metallic nanostructure excites the plasmons. By combining the advantages of these two designs, the short circuit of the proposed structure showed more than 65% enhancement compared to the conventional structure.


[1] A. J. McEvoy, T. Markvart, L. Castañer, and L. Castaner, Practical Handbook of Photovoltaics: Fundamentals and Applications. Academic Press, 2012.

[2] A. Behzadi, E. Gholamian, E. Houshfar, M. Ashjaee, and A. Habibollahzade, “Thermoeconomic analysis of a hybrid PVT solar system integrated with double effect absorption chiller for cooling/hydrogen production,” Energy Equip. Syst., vol. 6, no. 4, pp. 413–425, 2018.

[3] M. Bayareh, “Numerical simulation of a solar chimney power plant in the southern region of Iran,” Energy Equip. Syst., vol. 5, no. 4, pp. 431–437, 2017.

[4] M. A. Green, “Lambertian Light Trapping in Textured Solar Cells and Light-Emitting Diodes: Analytical Solutions,” vol. 241, no. May 2001, pp. 235–241, 2002.

[5] J. Poursafar, M. Kolahdouz, E. Asl Soleimani, and S. Golmohammadi, “Ultra-thin tandem-plasmonic photovoltaic structures for synergistically enhanced light absorption,” RSC Adv., p. , 2016.

[6] S. Ghorbani, M. Bashirpour, J. Poursafar, M. Kolahdouz, M. Neshat, and A. Valinejad, “Thin-Film Tandem Nanoplasmonic Photoconductive Antenna for High-Performance Terahertz Detection,” Superlattices Microstruct., 2018.

[7] J. Poursafar, M. Bashirpour, M. Kolahdouz, A. V. Takaloo, M. Masnadi-Shirazi, and E. Asl-Soleimani, “Ultrathin solar cells with Ag meta-material nanostructure for light absorption enhancement,” Sol. Energy, vol. 166, pp. 98–102, 2018.

[8] P. H. Wang, M. Theuring, M. Vehse, V. Steenhoff, C. Agert, and A. G. Brolo, “Light trapping in a-Si: H thin-film solar cells using silver nanostructures,” AIP Adv., vol. 7, no. 1, p. 15019, 2017.

[9] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, no. 3, p. 205, 2010.

[10] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett., vol. 86, no. 6, p. 63106, 2005.

[11] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys., vol. 101, no. 9, p. 93105, 2007.

[12] M. Bashirpour, A. Kefayati, M. Kolahdouz, and H. Aghababa, “Tuning the Electronic Properties of Symmetrical and Asymmetrical Boron Nitride Passivated Graphene Nanoribbons: Density Function Theory,” in Journal of Nano Research, 2018, vol. 54, pp. 35–41.

[13] M. Bashirpour, S. Ghorbani, M. Kolahdouz, M. Neshat, M. Masnadi-Shirazi, and H. Aghababa, “Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure,” RSC Adv., vol. 7, no. 83, pp. 53010–53017, 2017.

[14] M. Bashirpour, M. Kolahdouz, and M. Neshat, “Enhancement of optical absorption in LT-GaAs by double-layer nanoplasmonic array in photoconductive antenna,” Vacuum, vol. 146, pp. 430–436, 2017.

[15] M. Gharghi, “Spherical Silicon for Photovoltaic Application: Material, Modeling, and Devices,” UWSpace, 2008.

[16] K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett., vol. 93, no. 19, p. 191113, 2008.

[17] J.-D. Hwang and D.-R. Hsieh, “A surface-plasmon-enhanced silicon solar cell with KOH-etched pyramid structure,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 659–661, 2013.

[18] N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q.-H. Xu, “Plasmon-enhanced light-harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” Rsc Adv., vol. 5, no. 37, pp. 29076–29097, 2015.

[19] F. Taghian, V. Ahmadi, and L. Yousefi, “Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic traveling-wave,” J. Light. Technol., vol. 34, no. 4, pp. 1267–1273, 2016.

[20] V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express, vol. 18, no. 102, pp. A237--A245, 2010.

[21] R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells—a survey of plasmonic nanostructures,” Opt. Express, vol. 20, no. 102, pp. A177--A189, 2012.

[22] R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater., vol. 21, no. 34, pp. 3504–3509, 2009.

[23] P. Karpinski and A. Miniewicz, “Surface Plasmon Polariton Excitation in Metallic Layer Via Surface Relief Gratings in Photoactive Polymer Studied by the Finite-Difference Time-Domain Method,” Plasmonics, vol. 6, no. 3, pp. 541–546, 2011.

[24] S. A. Maier, Plasmonics - Fundamentals and Applications. Springer, 2007.

[25] R. Wang, T. Li, X. Shao, X. Li, and H. Gong, “The simulation of localized surface plasmon and surface plasmon polariton in wire grid polarizer integrated on InP substrate for InGaAs sensor,” AIP Adv., vol. 5, no. 7, pp. 1–6, 2015.

[26] N. M. Burford, M. J. Evans, and M. O. El-Shenawee, “Plasmonic Nanodisk Thin-Film Terahertz Photoconductive Antenna,” IEEE Trans. Terahertz Sci. Technol., vol. 8, no. 2, pp. 237–247, 2018.

[27] V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater., vol. 22, no. 43, pp. 4794–4808, 2010.

[28] R. Biswas and D. Zhou, “Simulation and modeling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. status solidi, vol. 207, no. 3, pp. 667–670, 2010.

[29] C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv., vol. 5, no. 100, pp. 81866–81874, 2015.

[30] S. Ghorbani, M. Bashirpour, M. Forouzmehr, M. R. Kolahdouz, and M. Neshat, “Simulation of THz photoconductive antennas loaded by different metallic nanoparticles,” in 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), 2016, pp. 62–64.

[31] S. Ghorbani, M. Bashirpour, M. Kolahdouz, M. Neshat, M. Mansouree, and M. Forouzmehr, “Improving Efficiency of THz Photoconductive Antennas Using Nano Plasmonic Structure,” in Asia Communications and Photonics Conference 2016, 2016, p. AF2A.73.

[32] G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromechanics Microengineering, vol. 20, no. 7, p. 75028, 2010.