LES/FMDF of premixed methane/air flow in a backward-facing step combustor

Document Type: Research Paper


1 Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran



In the present study, a hybrid Eulerian-Lagrangian methodology is utilized for large eddy simulation (LES) of premixed fuel/air flow over a three-dimensional backward facing step (BFS). The fluid dynamic features are obtained by solving the Eulerian filtered compressible transport equations while the species are predicted by using the filtered mass density function method (FMDF).  Some scalar fields are duplicated in FD and MC solvers to examine the numerical consistency between them. A good agreement is achieved by comparing the essential characteristics of the BFS flow (such as the mean and RMS values of the velocity and temperature fields and also the reattachment length) obtained from numerical results with the measurements. This ensures that the proposed hybrid method is reliable for studying the reacting flow in relatively complex combustion systems. Additionally, the performance of several SGS models are assessed, and the results indicate that the dynamic Smagorinsky and WALE models are superior to standard Smagorinsky and MKEV models.


[1] H.M. Altay, D.E. Hudgins, R.L. Speth, A.M. Annaswamy, A.F. Ghoniem, Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone, Combustion and Flame, 157(4) (2010) 686-700.

[2] H.M. Altay, R.L. Speth, D.E. Hudgins, A.F. Ghoniem, Flame–vortex interaction driven combustion dynamics in a backward-facing step combustor, Combustion and Flame, 156(5) (2009) 1111-1125.

[3] T. Kitano, K. Kaneko, R. Kurose, S. Komori, Large-eddy simulations of gas-and liquid-fueled combustion instabilities in back-step flows, Combustion and Flame, 170 (2016) 63-78.

[4] W. Jones, A. Marquis, F. Wang, Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method, Fuel, 140 (2015) 514-525.

[5] Y. Huang, V. Yang, Dynamics and stability of lean-premixed swirl-stabilized combustion, Progress in Energy and Combustion Science, 35(4) (2009) 293-364.

[6] D.M. Driver, H.L. Seegmiller, J.G. Marvin, Time-dependent behavior of a reattaching shear layer, AIAA Journal, 25(7) (1987) 914-919.

[7] Y. El Banhawy, S. Sivasegaram, J. Whitelaw, Premixed, turbulent combustion of a sudden-expansion flow, Combustion and Flame, 50 (1983) 153-165.

[8] C. Fureby, Homogenization based LES for turbulent combustion, Flow, turbulence and combustion, 84(3) (2010) 459-480.

[9] A. Ganji, R. Sawyer, Experimental study of the flow field of a two-dimensional premixed turbulent flame, AIAA Journal, 18(7) (1980) 817-824.

[10] G. Kewlani, K. Vogiatzaki, S. Shanbhogue, A.F. Ghoniem, Validation Study of Large-Eddy Simulations of Wake Stabilized Reacting Flows using Artificial Flame Thickening Approaches, in:  51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.

[11] P. Moreau, J. Labbe, F. Dupoirieux, R. Borghi, Experimental and numerical study of a turbulent recirculation zone with combustion, in:  Turbulent Shear Flows 5, Springer, 1987, pp. 337-346.

[12] N.S. Park, S.C. Ko, Large eddy simulation of turbulent premixed combustion flows over backward facing step, Journal of mechanical science and technology, 25(3) (2011) 713-719.

[13] R.W. Pitz, J.W. Daily, Combustion in a turbulent mixing layer formed at a rearward-facing step, AIAA Journal, 21(11) (1983) 1565-1570.

[14] B. Sainte-Rose, N. Bertier, S. Deck, F. Dupoirieux, A DES method applied to a Backward Facing Step reactive flow, Comptes Rendus Mécanique, 337(6) (2009) 340-351.

[15] M. Shahi, J.B. Kok, A. Pozarlik, On characteristics of a non-reacting and a reacting turbulent flow over a backward facing step (BFS), International Communications in Heat and Mass Transfer, 61 (2015) 16-25.

[16] C. Velez, S. Martin, A. Jemcov, S. Vasu, Large Eddy Simulation of an Enclosed Turbulent Reacting Methane Jet With the Tabulated Premixed Conditional Moment Closure Method, Journal of Engineering for Gas Turbines and Power, 138(10) (2016) 101501.

[17] S. Hemchandra, S. Shanbhogue, S. Hong, A.F. Ghoniem, Role of hydrodynamic shear layer stability in driving combustion instability in a premixed propane-air backward-facing step combustor, Physical Review Fluids, 3(6) (2018) 063201.

[18] B.S. Long, A.M. Briones, S.D. Stouffer, B.A. Rankin, Effect of Rayleigh-Taylor Instability on Backward-Facing-Step Stabilized Turbulent Premixed Flames, in:  ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, 2017, pp. V04BT04A027-V004BT004A027.

[19] B. Nagarajan, N. Baraiya, S. Chakravarthy, Effect of inlet flow turbulence on the combustion instability in a premixed backward-facing step combustor, Proceedings of the Combustion Institute,  (2018).

[20] R. Sampath, M. Mathur, S.R. Chakravarthy, Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor, Physical Review E, 94(6) (2016) 062209.

[21] M.A. Nemitallah, G. Kewlani, S. Hong, S.J. Shanbhogue, M.A. Habib, A.F. Ghoniem, Investigation of a turbulent premixed combustion flame in a backward-facing step combustor; effect of equivalence ratio, Energy, 95 (2016) 211-222.

[22] P. Colucci, F. Jaberi, P. Givi, S. Pope, Filtered density function for large eddy simulation of turbulent reacting flows, Physics of Fluids (1994-present), 10(2) (1998) 499-515.

[23] F. Jaberi, P. Colucci, S. James, P. Givi, S. Pope, Filtered mass density function for large-eddy simulation of turbulent reacting flows, Journal of Fluid Mechanics, 401 (1999) 85-121.

[24] A. Afshari, F. Jaberi, LARGE-SCALE SIMULATIONS OF TURBULENT COMBUSTION AND PROPULSION SYSTEMS, in: G.D. Roy (Ed.) Combustion Processes in Propulsion: Control, Noise, and Pulse Detonation, Academic Press, 2005, pp. 31.

[25] A. Afshari, F.A. Jaberi, T.I. Shih, Large-eddy simulations of turbulent flows in an axisymmetric dump combustor, AIAA Journal, 46(7) (2008) 1576-1592.

[26] A. Banaeizadeh, Z. Li, F.A. Jaberi, Compressible Scalar Filtered Mass Density Function Model for High-Speed Turbulent Flows, AIAA Journal, 49(10) (2011) 2130-2143.

[27] F.A. Jaberi, Large eddy simulation of turbulent pre-mixed flame via filtered mass density function, in:  37th AIAA Aerospace Sciences Meeting and Exhibit, 1999.

[28] S. James, F. Jaberi, Large scale simulations of two-dimensional nonpremixed methane jet flames, Combustion and Flame, 123(4) (2000) 465-487.

[29] M. Nik, S. Yilmaz, P. Givi, M. H. Sheikhi, S. Pope, Simulation of Sandia flame D using velocity-scalar filtered density function, AIAA Journal, 48(7) (2010) 1513-1522.

[30] M. Sheikhi, T. Drozda, P. Givi, F. Jaberi, S. Pope, Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D), Proceedings of the Combustion Institute, 30(1) (2005) 549-556.

[31] M. Yaldizli, K. Mehravaran, F. Jaberi, Large-eddy simulations of turbulent methane jet flames with filtered mass density function, International Journal of Heat and Mass Transfer, 53(11) (2010) 2551-2562.

[32] S.L. Yilmaz, M. Nik, P. Givi, P.A. Starkey, Scalar filtered density function for large eddy simulation of a Bunsen burner, Journal of Propulsion and Power, 26(1) (2010) 84-93.

[33] M. Esmaeili, A. Afshari, F.A. Jaberi, Large-eddy simulation of turbulent mixing of a jet in cross-flow, Journal of Engineering for Gas Turbines and Power, 137(9) (2015) 091510.

[34] M. Esmaeili, A. Afshari, F.A. Jaberi, Turbulent mixing in a non-isothermal jet in crossflow, International Journal of Heat and Mass Transfer, 89 (2015) 1239-1257.

[35] A. Banaeizadeh, A. Afshari, H. Schock, F. Jaberi, Large-eddy simulations of turbulent flows in internal combustion engines, International Journal of Heat and Mass Transfer, 60 (2013) 781-796.

[36] M. Sheikhi, P. Givi, S. Pope, Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows, Physics of Fluids (1994-present), 19(9) (2007) 095106.

[37] L.Y. Gicquel, P. Givi, F. Jaberi, S. Pope, Velocity filtered density function for large eddy simulation of turbulent flows, Physics of Fluids (1994-present), 14(3) (2002) 1196-1213.

[38] M. Sheikhi, T. Drozda, P. Givi, S. Pope, Velocity-scalar filtered density function for large eddy simulation of turbulent flows, Physics of Fluids (1994-present), 15(8) (2003) 2321-2337.

[39] P. Givi, Filtered density function for subgrid-scale modeling of turbulent combustion, AIAA Journal, 44(1) (2006) 16-23.

[40] C.K. Madnia, F.A. Jaberi, P. Givi, Large eddy simulation of heat and mass transport in turbulent flows, Handbook of Numerical Heat Transfer, Second Edition,  (2006) 167-189.

[41] A.A. Aldama, Filtering techniques for turbulent flow simulation, Springer Science & Business Media, 2013.

[42] W. Sutherland, LII. The viscosity of gases and molecular force, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223) (1893) 507-531.

[43] J. Suh, S.H. Frankel, L. Mongeau, M.W. Plesniak, Compressible large eddy simulations of wall-bounded turbulent flows using a semi-implicit numerical scheme for low Mach number aeroacoustics, Journal of Computational Physics, 215(2) (2006) 526-551.

[44] A. Yoshizawa, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Physics of Fluids (1958-1988), 29(7) (1986) 2152-2164.

[45] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid‐scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics (1989-1993), 3(7) (1991) 1760-1765.

[46] P.a. Moin, K. Squires, W. Cabot, S. Lee, A dynamic subgrid‐scale model for compressible turbulence and scalar transport, Physics of Fluids A: Fluid Dynamics (1989-1993), 3(11) (1991) 2746-2757.

[47] F. Nicoud, F. Ducros, Subgrid-scale stress modeling based on the square of the velocity gradient tensor, Flow, Turbulence and Combustion, 62(3) (1999) 183-200.

[48] S.K. Lele, Compact finite difference schemes with a spectral-like resolution, Journal of computational physics, 103(1) (1992) 16-42.

[49] M.R. Visbal, D.V. Gaitonde, Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes, Journal of Computational Acoustics, 9(04) (2001) 1259-1286.

[50] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43(1) (2001) 89-112.

[51] C. Gardiner, Handbook of stochastic methods, Springer-Verlag, New York, 1990.

[52] S. Karlin, H.M. Taylor, A second course in stochastic processes, Gulf Professional Publishing, 1981.

[53] P.E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer, 1992.

[54]  G. Lacaze, E. Richardson, T. Poinsot, Large eddy simulation of spark ignition in a turbulent methane jet, Combustion and Flame, 156(10) (2009) 1993-2009.

[55] P. Magre, G. Collin, P. Bouchardy, Application de la DRASC á l'opération A3C, Onera Technical Report - RTS 4/3608 EY, (1992).

[56] B. Sainte-Rose, Simulations numériques d'écoulements réactifs massivement décollés par une approche hybride RANS/LES, Châtenay-Malabry, Ecole centrale de Paris, 2010.

[57] S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New Journal of Physics, 6(1) (2004) 35.

[58] A. Coussement, O. Gicquel, G. Degrez, Large Eddy Simulation of a Pulsed Jet in Crossflow, in:  Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.

[59] G. Biswas, M. Breuer, F. Durst, Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers, Journal of fluids engineering, 126(3) (2004) 362-374.