Simulation and modeling of hydrogen production from glucose biomass model compound via hydro-thermal gasification

Document Type: Research Paper

Authors

1 Department of Mechanical Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran

2 Modern Manufacturing Technologies Research Center, Najafabad branch, Islamic Azad University, Najafabad, Iran

Abstract

Glucose is a 6-carbon carbohydrate compound present in plants and the ingredient for hemicellulose which makes up 30% of plants’ total mass. The current study uses glucose as reactant and evaluates hydrogen generation at different temperatures and different amounts of input flow of glucose – water mixture. Hydrothermal gasification method is used for hydrogen generation in an open system with controlled volume with temperature changing in the range of 375 to 1000ºC, water intake flow of 800 kg/h and biomass intake flow of 2000 kg/h.

Keywords


[1] Safari F., Salimi M., Tavasoli A., Ataei A., Non-Catalytic Conversion of Wheat Straw, Walnut Shell and Almond Shell into Hydrogen Rich Gas in Supercritical Water Media, The Chinese Journal of Chemical Engineering (2016) 24(8):1097–1103.

[2] Norouzi O., Safari F., Jafarian S., Tavasoli A., Karimi A., Hydrothermal Gasification Performance of Enteromorpha Intestinalis as an Algal Biomass for Hydrogen-Rich Gas Production Using Ru Promoted Fe–Ni/γ-Al2 O3 Nanocatalysts, The journal Energy Conversion and Management (2017) 141: 63–71.

[3] Dincer I., Green Methods for Hydrogen Production, The International Journal of Hydrogen Energy (2012) 37(2)1954–1971.

[4] Yılmaz S., Selim H., A Review on the Methods for Biomass to Energy Conversion Systems Design, Renewable and Sustainable Energy Reviews (2013) 25: 420–430,.

[5] Salimi M., Safari F., Tavasoli A., Shakeri A., Hydrothermal Gasification of Different Agricultural Wastes in Supercritical Water Media for Hydrogen Production: A Comparative Study, The International Journal of Industrial Chemistry (2016) 7(3): 277–285.

[6] Kobayashi H., Fukuoka A., Synthesis and Utilisation of Sugar Compounds Derived from Lignocellulosic Biomass, Green Chemistry(2013) 15(7): 1740–1763.

[7] Safari F., Tavasoli A., Ataei A., Choi J.-K., Hydrogen and Syngas Production from Gasification of Lignocellulosic Biomass in Supercritical Water Media, The International Journal of Recycling of Organic Waste in Agriculture (2015) 4(2): 121–125.

[8] Najjar Y. S. H., Hydrogen safety: The Road Toward Green Technology, The International Journal of Hydrogen Energy (2013) 38(25):10716–10728.

[9] Ding N., Azargohar R., Dalai A. K., Kozinski J. A., Catalytic Gasification of Cellulose and Pinewood to H2 in Supercritical Water, Fuel (2014) 118: 416–425.

[10] Marone A., Izzo G., Mentuccia L., Massini G., Paganin P., Rosa S., Varrone C., Signorini A., Vegetable Waste as Substrate and Source of Suitable Microflora for Bio-Hydrogen Production, Renewable Energy (2014) 68:6–13.

[11] Midilli A., Dincer I., Hydrogen as a Renewable and Sustainable Solution in Reducing Global Fossil Fuel Consumption, The International Journal of Hydrogen Energy (2008) 33(16):4209–4222.

[12] Dincer I., Zamfirescu C., Sustainable Hydrogen Production Options and the Role of IAHE, The International Journal of Hydrogen Energy (2012) 37(21):16266–16286.

[13] Parthasarathy P., Narayanan K. S., Hydrogen Production from Steam Gasification of Biomass: Influence of Process Parameters on Hydrogen Yield–a Review, Renewable Energy (2014) 66: 570–579.

[14] Kalinci Y., Hepbasli A., Dincer I., Biomass-Based Hydrogen Production: A Review and Analysis, The International Journal of Hydrogen Energy (2009) 34(21): 8799–8817.

[15] Safari F., Norouzi O., Tavasoli A., Hydrothermal Gasification of Cladophora Glomerata Macroalgae over its Hydrochar as a Catalyst for Hydrogen-Rich Gas Production, Bioresource Technology (2016) 222:232–241.

[16] Mora‐Pale M., Meli L., V Doherty T., Linhardt R. J., Dordick J. S., Room Temperature Ionic Liquids as Emerging Solvents for the Pretreatment of Lignocellulosic Biomass, Biotechnology and Bioengineering (2011)108(6):1229–1245.

[17] Guo Y., Wang S. Z., Xu D. H., Gong Y. M., Ma H. H., Tang X. Y., Review of Catalytic Supercritical Water Gasification for Hydrogen Production from Biomass, Renewable and Sustainable Energy Reviews (2010) 14(1)334–343.

[18] Safari F., Javani N., Yumurtaci Z., Hydrogen Production Via Supercritical Water Gasification of Almond Shell over Algal and Agricultural Hydrochars as Catalysts, The International Journal of Hydrogen Energy (2017).

[19] Safari F., Tavasoli A., Ataei A., Gasification of Iranian Walnut Shell as a Bio-Renewable Resource for Hydrogen-Rich Gas Production Using Supercritical Water Technology, The International Journal of Industrial Chemistry (2017) 8(1): 29–36.

[20] Florin N. H., Harris A. T., Hydrogen Production from Biomass Coupled with Carbon Dioxide Capture: The Implications of Thermodynamic Equilibrium, The International Journal of Hydrogen Energy (2007) 32(17):4119–4134.

[21] Hrabovsky M., Pyrolysis of Wood in Arc Plasma for Syngas Production, High Temperature Material Processes,  An International Q. High-Technology Plasma Processes (2006) 10(4).

[22] Erlach B., Harder B., Tsatsaronis G., Combined Hydrothermal Carbonization and Gasification of Biomass with Carbon Capture, Energy (2012) 45(1): 329–338.

[23] Benz S. J., Godoy E., Scenna N. J., An Optimization Model for Evaluating the Economic Impact of Availability and Maintenance Notions During the Synthesis and Design of a Power Plant, Computers & Chemical Engineering (2015) 57:135-154.

[24] Srinivas T., V Reddy B., Gupta A., Thermal Performance of a Biomass Plant with a Triple Generation System, International Journal of Green Energy (2015) 12(6): 585–594.

[25] Srinivas T., V Reddy B., Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery, The Journal of Energy Resources Technology (2014) 136(2): 21204.

[26] Pantaleo A. M., Camporeale S. M., Miliozzi A., Russo V., Shah N., Markides C. N., Novel hybrid CSP-Biomass CHP for Flexible Generation: Thermo-Economic Analysis and Profitability Assessment, Applied Energy (2017) 204:994-1006.

[27] Deshmukh M. K., Deshmukh S. S., Modeling of Hybrid Renewable Energy Systems, Renewable and Sustainable Energy  Reviews (2008) 12(1): 235–249.

[28] Reichling J. P., Kulacki F. A., Utility Scale Hybrid Wind–Solar Thermal Electrical Generation: A Case Study for Minnesota, Energy (2008) 33(4): 626–638.

[29] Safari F., Tavasoli A., Ataei A., Gasification of Sugarcane Bagasse in Supercritical Water Media for Combined Hydrogen and Power Production: A Novel Approach, International Journal of Environmental Science and Technology (2016) 13 (10): 2393–2400.

[30] Saxena R. C., Seal D., Kumar S., Goyal H. B., Thermo-Chemical Routes for Hydrogen Rich Gas from Biomass: A Review, Renewable and Sustainable Energy Reviews (2008) 12(7): 1909–1927.

[31]Kruse A., Supercritical Water Gasification,Biofuels, Bioproducts and  Biorefining (2008)2(5):415–437.

[32]Rashidi M., Tavasoli A., Hydrogen Rich Gas Production Via Supercritical Water Gasification of Sugarcane Bagasse Using Unpromoted and Copper Promoted Ni/CNT Nanocatalysts, The Journal of Supercritical Fluids (2015) 98:111–118.