Investigation of optimization algorithms and their operating parameters in different types of heat exchangers

Document Type : Research Paper


1 Department of Computer Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran



In this study, five different heat exchangers (HE) including, plate-fin (PFHE), fin tube (FTHE), rotary regenerator (RR), shell and tube (STHE) and gasket plate (GPHE) are optimized using four different algorithms including the binary genetic algorithm (BGA), real parameter genetic algorithm (RGA), particle swarm optimization (PSO) algorithm and the differential evolution (DE) algorithm. Verified codes are used for all heat exchangers and total annual cost (TAC) is considered as the objective function and heat exchanger configuration parameters are chosen as design parameters in all studied exchangers. RGA has the lowest insensitivity to the algorithm input parameters, or lowest relative standard deviation (RSD), for all studied heat exchangers. The best TAC in the GPHE, FTHE, PFHE, RR, STHE can be achieved in the points <C1, C2> = (0,0.6), (0, 1.95), (0, 1.5), (0, 2.1), (0, 1.65) and < , > = (2.4,2.4), (1, 2.4), (3.25, 3.75), (3.15, 3), (2.6, 2.8) where  the lowest run- time and RSD are our basic requirements, respectively. The results also reveal that DE has the worst result in the case of RSD and GA has the worst result in the case of run-time. Finally, RGA is recommended for the optimization of different types of heat exchangers.

[1] Hassan. Hajabdollahi, Pouria Ahmadi, Ibrahim Dincer. Exergetic optimization of shell-and-tube heat exchangers using NSGA-II. Heat Transfer Engineering 33 (2012) 618-628.
[2] Sepehr. Sanaye, Hassan. Hajabdollahi, Multi-objective optimization of shell and tube heat exchangers, Applied Thermal Engineering 30 (2010) 1937-1945.
[3] Rihanna Khosravi, Abbas Khosravi, Saeid Nahavandi, Hassan Hajabdollahi, Effectiveness of evolutionary algorithms for optimization of heat exchangers, Energy Conversion and Management, 89, (2015), 281-288
[4] Hassan. Hajabdollahi, Pouria Ahmadi, Ibrahim Dincer, Thermoeconomic optimization of a shell and tube condenser using the evolutionary algorithm", International Journal of Refrigeration, 34 (2011), 1066-1076.
[5] Sepehr Sanaye, Hassan Hajabdollahi, Thermal-Economic Multi-objective Optimization of Plate Fin Heat Exchanger Using Genetic Algorithm, Applied Energy, 87 (2010), 1893–1902.
[6] Pouria Ahmadi, Hassan Hajabdollahi and Ibrahim Dincer, “Cost and Entropy generation minimization of a cross-flow Plate-Fin Heat Exchanger (PFHE) using Multi-Objective genetic algorithm" ASME Transaction, Journal of Heat Transfer, 133 (2010) 021801.
[7] Hassan. Hajabdollahi, Mojtaba Tahani , M.H. shojaee fard. CFD modeling and multiobjective optimization of compact heat exchanger using CAN method, Applied Thermal Engineering 31 (2011) 2597-2604.
[8] Hassan Hajabdollahi, Pouria Ahmadi, Ibrahim Dincer "Modeling and Multi-Objective Optimization of Plain Fin and Tube Heat Exchanger Using Evolutionary Algorithm" International Journal of Thermophysics and Heat Transfer 3 (2011) 424-431.
[9] Amir hesan kashani nia, mohammad madahi, Hassan. Hajabdollahi, Thermoeconomic optimization of Air-cooled heat exchanger. Applied thermal engineering 54 (2013) 43-55.
[10] Sepehr. Sanaye, Hassan. Hajabdollahi, Multi-objective optimization of rotary regenerator using genetic algorithm, International Journal of Thermal Sciences, 48 (2009) 1967–1977.
[11] Farzaneh. Hajabdollahi, Zahra Hajabdollahi, Hassan Hajabdollahi. Optimum Design of Gasket Plate Heat Exchanger Using Multimodal Genetic Algorithm. Heat Transfer Research 44 (2013).
[12] H. Sadeghzadeh, M.A. Ehyaei, M.A. Rose, Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms, Energy Conversion and Management, 93 (2015) 84-91.
[13] H. Sadeghzadeh, M. Aliehyaei, MA. Rosen. "Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm." Sustainability 7, no. 9 (2015): 11679-11695.
[14] B.V. Babu, S.A. Munawar, Differential evolution strategies for the optimal design of shell-and-tube heat exchangers, Chemical Engineering Science, 62 (2007) 3720-3739.
[15] H. Hajabdollahi, Investigating the effect of non-similar fins in thermo-economic optimization of plate-fin heat exchanger, Applied Thermal Engineering, 82 (2015) 152-161.
[16] O. Emrah Turgut, Hybrid Chaotic Quantum behaved Particle Swarm Optimization algorithm for thermal design of plate fin heat exchangers, Applied Mathematical Modelling, In Press, Corrected Proof, Available online 4 June 2015
[17] OE. Turgut, MS. Turgut, MT. Coban. "Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm." Ain Shams Engineering Journal 5, no. 4 (2014): 1215-1231.
[19] J. Lee, K.-Soo Lee., Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers, Applied Thermal Engineering, 89 (2015) 62-69.
[20]  M.A. Arie, A.H. Shooshtari, S.V. Dessiatoun, E. Al-Hajri, M.M. Ohadi    , Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger, International Journal of Heat and Mass Transfer, 81 (2015) 478-489.
[21] S.W. Hong, S.H. Ahn, O.K. Kwon, J.D. Chung, Optimization of a fin-tube type adsorption chiller by the design of experiment, International Journal of Refrigeration, 49 (2015) 49-56.
[22] Kubo, S., Yaji, K., Yamada, T. et al. A level set-based topology optimization method for optimal manifold designs with flow uniformity in plate-type microchannel reactors. Struct Multidisc Optim 55, 1311–1327 (2017).
[23] Ramalingom, D., Cocquet, P., Maleck, R. et al. A multi-objective optimization problem in mixed and natural convection for a vertical channel asymmetrically heated. Struct Multidisc Optim 60, 2001–2020 (2019).
[24] Jinyang Wang, Guomin Cui, Yuan Xiao, Xing Luo & Stephan Kabelac (2017) Bi-level heat exchanger network synthesis with evolution method for structure optimization and memetic particle swarm optimization for parameter optimization, Engineering Optimization, 49:3, 401-416.
[25] Hajabdollahi, H., Ahmadi, P., & Dincer, I. (2011). Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm. Journal of thermophysics and heat transfer, 25(3), 424-431.‏
[26] Ahmadi, P., Hajabdollahi, H., & Dincer, I. (2011). Cost and entropy generation minimization of a cross-flow plate fin heat exchanger using multi-objective genetic algorithm. Journal of heat transfer, 133(2).‏
[27] Hajabdollahi, H., Ahmadi, P., & Dincer, I. (2011). Thermoeconomic optimization of a shell and tube condenser using both genetic algorithm and particle swarm. International journal of refrigeration, 34(4), 1066-1076.‏
[28] R.K. Shah, P. Sekulic, Fundamental of Heat Exchanger Design. John Wiley & Sons, Inc, 2003.
[29] R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for the rectangular offset-strip-fin compact heat exchanger, Exp. Therm. Fluid Sci. 10 (1995) 171–180.
[30] Wang, C. C., Chi, K. U., and Chang, C. J., “Heat Transfer and Friction Characteristics of Plain Fin-and-Tube Heat Exchanger, Part 2: Correlation,” International Journal of Heat and Mass Transfer, 43 (2000) 2693–2700.
[31] Hajabdollahi, Farzaneh, Zahra Hajabdollahi, and Hassan Hajabdollahi. "Thermo-economic modeling and optimization of underfloor heating using
evolutionary algorithms." Energy and Buildings 47 (2012): 91-97.
[32] Sunders, E. A. D., Heat Exchangers: Selection Design and Construction, New York: Wiley.
[33] Goldberg, David E., and John H. Holland. "Genetic algorithms and machine learning." Machine learning 3.2 (1988): 95-99.
[34] Deb K. Multi-objective optimization using evolutionary algorithms. Chichester: John Wiley and Sons, Ltd.; 2001.
[35] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, (1995) 1942–1945.
[36] Storn, Rainer, and Kenneth Price. "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces." Journal of global optimization 11.4 (1997): 341-359.