Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

Document Type: Research Paper

Authors

Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy time variations. The results of maximum power state optimizations are investigated considering the impact of dimensionless mass-flow rate parameter variations. One can see that the system performance shows high values of the dimensionless mass-flow rate parameter because of low power production while the high total cost rate is not reasonable. The other objective (besides power maximization) of the current study is to prepare finite-time thermodynamics for studying more practical systems using new thermodynamic modelling, exergy, and cost analyses of the current system.

Keywords


[1] Curzon FL, Ahlborn B., Efficiency of a CarnotEngine at Maximum Power Output, American Journal of Physics (1975)43(1): 22–4.

[2] Bejan A., Theory of Heat-Transfer Irreversible Power-Plants. International Journal of Heat and Mass Transfer (1988)31(6):1211–9.

[3] Wu C., Power Optimization of a Finite Time Carnot Heat Engine, Energy (1988)13(9): 681–7.

[4] Gordon JM., Observations on Efficiency of Heat Engines Operating at Maximum Power, American Journal of Physics (1990)58(4): 370–5.

[5] Wu C, Kiang RL., Finite-Time Thermodynamic Analysis of a Carnot Engine with Internal Irreversibility, Energy (1992) 1(12): 1173–8.

[6] Cheng CY, Chen CK., Power Optimization of an Endoreversible Regenerative Brayton Cycle, Energy (1996)2(4): 241–7.

[7] Cheng CY, Chen CK, Power Optimization of an Irreversible Brayton Heat Engine, Energy Sources (1997)1(5): 461–74.

[8] Chen LG, Sun FR, Wu C, Kiang RL., Theoretical Analysis of the Performance of a Regenerative Closed Brayton Cycle with Internal Irreversibilities, Energy Conversion and Management (1997)3(9): 871–7.

[9] Bejan A., Thermodynamic Optimization Alternatives, Minimization of Physical Size Subject to Fixed Power, International Journal Energy Research (1999)23: 1111–21.

[10] Carlos A Herrera, Jairo A Sandoval and Miguel E Rosillo, Power and Entropy Generation of an Extended Irreversible Brayton Cycle, Optimal Parameters and Performance, Journal of Physics D: Applied Physics (2006)39: 3414–3424.

[11] Wang, C., Chen, L., Ge, Y., Sun, F., Performance Analysis of an Endoreversible Rectangular Cycle with Heat Transfer Loss and Variable Specific Heats of Working Fluid, Journal homepage: www. IJEE. IEE Foundation, (2015) 6(1): 73-80.

[12] Agnew B., Walker S., Ng B., Tam I. C., Finite Time Analysis of a Tri-Generation Cycle, Energies (2015) 8(6): 6215-6229.

[13] Chen LG, Zheng JL, Sun FR, Wu C., Power Density Analysis and Optimization of a Regenerated Closed Variable-Temperature Heat Reservoir Brayton Cycle, Journal of Physics D: Applied Physics (2001) 3(11):1727–39.

[14] Ust Y, Sahin B, Yilmaz T., Optimization of a Regenerative Gas-Turbine Cogeneration System Based on a New Exergetic Performance Criterion, Exergetic Performance Coefficient, Proceedings of the Institution of Mechanical Engineers Part A(2007)221:447–58.

[15] Sadatsakkak S. A., Ahmadi M. H., Bayat R., Pourkiaei S. M., Feidt M., Optimization Density Power and Thermal Efficiency of an Endoreversible Braysson Cycle by Using Non-Dominated Sorting Genetic Algorithm, Energy Conversion and Management (2015) 93: 31-39.

[16]Acıkkalp E., Exergetic Sustainability Evaluation of Irreversible Carnot Refrigerator, Physica A, Statistical Mechanics and its Applications (2015) 436: 311–320.

[17] Açıkkalp E., Yamık H., Limits and Optimization of Power Input or Output of Actual Thermal Cycles, Entropy(2013) 15: 3219–3248.

[18] Ebrahimi R., Effects of Variable Specific Heat Ratio on Performance of an Endoreversible Otto Cycle, Relation (2010)24: 31.

[19] Madadi V., Tavakoli V., Rahimi A., First and Second Thermodynamic Law Analyses Applied to a Solar Dish Collector, Journal of Non-Equilibrium Thermodynamics (2014) 39: 183–197.

[20] Vaudrey A., Lanzetta F., Feidt M., H. B. Reitlinger and the Origins of the Efficiency at Maximum Power Formula for Heat Engines, Journal of Non-Equilibrium Thermodynamics(2014)39: 199–203.

[21] Açıkkalp E, Yamık H., Modeling and Optimization of Maximum Available Work for Irreversible Gas Power Cycles with Temperature Dependent Specific Heat, Journal of Non-Equilibrium Thermodynamics (2015) 40(1):25-39.

[22] Yang B, Chen L G, Ge Y L, Sun F R., Exergy Performance Analyses of an Irreversible Two-Stage Intercooled Regenerative Reheated Closed Brayton CHP Plant, International Journal of Exergy (2014)14(4): 459-483.

[23] Yang B, Chen L G, Ge Y L, Sun F R., Finite time exergoeconomic performance of a real, intercooled, regenerated gas turbine cogeneration plant. Part 2: heat conductance distribution and pressure ratio optimization. International Journal of Low-Carbon Technologies (2014) 9(4): 262-267.

[24] Zhang Z. L., Chen L. G., Sun F. R., Performance Optimization for Two Classes of Combined Regenerative Brayton and Inverse Brayton Cycles, International Journal of Sustainable Energy (2014) 33(4): 723-741.

[25] Zhang Z. L., Chen L. G., Ge Y. L., Sun F. R., Thermodynamic Analysis for a Regenerative Gas Turbine Cycle in Cooling Process, International Journal of Energy and Environment (2014) 5(6): 701-708.

[26] Yang B., Chen L. G., Ge Y. L., Sun F.R., Exergy Analyses of an Endoreversible Closed Regenerative Brayton Cycle CCHP Plant, International Journal of Energy and Environment (2014) 5(6): 655-668.

[27] Acıkkalp E., Methods Used for Evaluation of Actual Power Generating Thermal Cycles and Comparing Them, International Journal Electrical Power & Energy Systems (2015) 69: 85–89.

[28] Angulo-Brown F., An Ecological Optimization Criterion for Finite-Time Heat Engines, Journal of Applied Physics (1991) 6(11):7465–9.

[29] Yan Z., Comment on an Ecological Optimization Criterion for Finite-Time Heat Engines, Journal of Applied Physics (1993) 73(7):3583.

[30] Cheng C.Y., Chen C.K., Ecological Optimization of an Endoreversible Brayton Cycle, Energy Conversion and Management (1998) 3(1-2):33–44.

[31] Chen C.Y., Chen C.K., Ecological Optimization of an Irreversible Brayton Heat Engine, Journal Physics D: Applied Physics (1999) 32:350–7.

[32] Ust, Y., Safa, A., Sahin, B. Ecological Performance Analysis of an Endoreversible Regenerative Brayton Heat-Engine, Applied Energy (2005) 80(3): 247-260.

[33] Kumara R., Kaushikb S. C., Kumarc R. Performance Analysis of an Irreversible Regenerative Brayton Cycle Based on Ecological Optimization Criterion, International Journal of Thermal & Environmental Engineering, (2015) 9(1): 25-32.

[34] Long R., Liu W., Ecological Optimization for General Heat Engines, Physica A: Statistical Mechanics and its Applications (2015) 434: 232-239.

[35] Wang J., Chen L., Ge Y., Sun F., Ecological Performance Analysis of an Endoreversible Modified Brayton Cycle, International Journal Sustainable Energy (2014) 33(3): 619-634.

[36] Rio Oliveira S., Scalon V. L., Repinaldo V. P., Ecological Optimization of an Irreversible Brayton Cycle with Regeneration, Inter-Cooling and Reheating, Applied Mathematical Model (2015).

[37] Naserian M. M., Farahat S., Sarhaddi F. Finite Time Exergy Analysis and Multi-Objective Ecological Optimization of a Regenerative Brayton Cycle Considering the Impact of Flow Rate Variations, Energy Conversion and Management (2015) 103: 790-800.

[38] Durmusoglu Y., Ust Y., Thermodynamic Optimization of an Irreversible Regenerative Closed Brayton Cycle Based on Thermoeconomic Performance Criterion, Applied Mathematical Model (2014) 38: 5174–5186.

[39] Sadatsakkak S. A., Ahmadi M. H., Ahmadi M. A., Thermodynamic and Thermo-Economic Analysis and Optimization of an Irreversible Regenerative Closed Brayton Cycle, Energy Conversion and Management (2015) 94: 124-129.

[40] Qureshi B. A., Zubair S. M., Thermoeconomic Considerations in the Allocation of Heat Transfer Inventory for Irreversible Refrigeration and Heat Pump Systems, International Journal of Refrigeration (2015) 54: 67-75.

[41] Ahmadi M. H., Ahmadi M. A., Bayat R., Ashouri M., Feidt M. Thermo-Economic Optimization of Stirling Heat Pump by Using Non-Dominated Sorting Genetic Algorithm, Energy Conversion and Management (2015) 91: 315-322.

[42] Qureshi B. A., Thermoeconomic Considerations in the Allocation of Heat Transfer Inventory for Irreversible Power Systems, Applied Thermal Engineering (2015) 90: 305-311.

[43] Sahraie H., Mirani M. R., Ahmadi M. H., Ashouri M., Thermo-Economic and Thermodynamic Analysis and Optimization of a Two-Stage Irreversible Heat Pump, Energy Conversion and Management (2015) 99: 81-91.

[44] Dunbar W. R., Lior N. Sources of Combustion Irreversibility, Combustion Science and Technology (1994) 103(1-6), 41-61.

[45] Bejan A., Tsatsaronis G, Moran M. Thermal Design and Optimization,John Wiley & Sons (1996).

[46] Deb K., Tushar G., Controlled Elitist Non-Dominated Sorting Genetic Algorithms for Better Convergence, In Evolutionary Multi-Criterion Optimization, Springer Berlin Heidelberg, (2001) 67-81.

[47] Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons (2001).

[48] Seyyedi S. M., Ajam H., Farahat S., A New    Approach    for    Optimization   of Thermal Power Plant Based on the Exergoeconomic Analysis and Structural Optimization Method, Application to the CGAM Problem, Energy Conversion and Management (2010) 51(11): 2202-2211.