Improvement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller

Document Type: Research Paper

Authors

Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran

Abstract

One of the main problems in wind energy conversion system (WECS) is how to achieve maxim‌u‌m output power in different wind speeds. Maximum methods for maximum power point tracking in wind energy conversion syst‌e‌ms require the knowledge of system characteristics and mechanic sensors. So, using these methods practically will follow with high price and an abundant difficulties. In this paper, new method for maximum power point tracking based on fuzzy controller has been presented that is maximum power point tracking with high power coefficient without requiring mechanical sensors and knowing system characteristics. Wind energy conversion system is simulated by using tracking system based on fuzzy controller in MATLAB/SIMULINK and simulation results prove the advantages of suggested tracking method such as increase of power coefficient in wind turbine and decrease of fluctuations about maximum power point.

Keywords


[1]Wu Z.Q., Yang Y., Xu C.H., Adaptive Fault Diagnosis and Active Tolerant Control for Wind Energy Conversion System, International Journal of Control, Automation, and Systems (2015) 13 (1): 1-6.

[2]Xia Y., Ahmed K.H., Williams B.W., A New Max­i­m­u­m Power Point Tracking Technique for Permanent Magnet Syn­chronous Generator Based Wind Energy Conversion System,IEEE Transactions on Power Electronics (2011)  26 (12): 3609–3620.

[3]Tang Y., Bai Y., Huang C., Du B., Linear Active Disturbance Rejection-Based Load Frequency Control Concerning High Penetration of Wind Energy, Energy Conversion and Management (2015) 95 (1): 259–271.

[4]Hussein A.A., Ali M.H., Comparison Among Series Compensators for Transient Stability Enhancement of Doubly Fed Induction Generator Based Variable Speed Wind Turbines, IET Renewable Power Generation (2016) 10 (1): 116-126.

[5]Javaheri Fard H., Najafi H.R., Eliasi H., Active and Reactive Power Control Via Currents of a Rotor’s d and q Components with Nonlinear Predictive Control Strategy in a Doubly Fed Induction Generator Based on Wind Power System, Energy Equipment and Systems (2015)  3 (2): 143-157.

[6]Nejat A., Abyanaki M.R., Rahbari I., A Robust Engineering Approach for Wind Turbine Blade Profile Aeroelastic Computation, Energy Equipment and Systems (2014) 2 (2): 121-128.

[7]Mauricio J.M., Marano A., Eeposito A.G., Ramos J.L.M., Frequency Regulation Contribution Through Variable Speed Wind Energy Conversion System, IEEE Transactions on Power Systems (2009) 24 (1): 173-180.

[8]Zou Y., Elbuluk M., Sozer Y.,  Stability Analysis of Maxi­mum Power Point Tracking (MPPT) Method in Wind Power Systems, Proceeding of the IEEE/IAS (2011) 1-8.

[9]Kazmi S.M.R., Goto H., Guo H.-J., Ichinokura O., A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion System, IEEE Transactions on Industrial Electron (2011) 58 (1): 29–36.

[10] Shahgholian G., Izadpanahi N., Improving the Performance of Wind Turbine Equipped with DFIG Using STATCOM Based on Input-Output Feedback Linearization Controller, Energy Equipment and Systems (2016) 4 (1): 65-79.

[11]Nayanar V., Kumaresan N., Ammasai-Gounden N., A Single-Sensor-Based MPPT Controller for Wind-Driven Induction Generators Supplying DC Mmicrogrid, IEEE Transactions on Power Electronics (2016)  31 (2): 1161-1172.

[12]Linus R.M., Damodharan P., Maximum Power Point Tracking Method Using a Modified Perturb and Observe Algorithm for Grid Connected Wind Energy Conversion Systems, IET Renewable Power Generation (2015) 9 (6): 682-689.

[13]Dalala Z.M., Zahid Z.U., Yu W., Cho Y., Lai J.S., Design and Analysis of an MPPT Technique for Small-Scale Wind Energy Conversion Systems, IEEE Transactions on Energy Conversion (2013) 28 (3): 756-767.

[14]Shaker M.S., Patton R.J., Active Sensor Fault Tolerant Output Feedback Tracking Control for Wind Turbine Systems Via T–S Model, Engineering Applications of Artificial Intelligence (2014)  34: 1–12.

[15] Fooladgar M., Rok-Rok E., Fani B., Shahgholian G, Evaluation of the Trajectory Sensitivity Analysis of the DFIG Control Parameters in Response to Changes in Wind Speed and the Line Impedance Connection to the Grid DFIG, Journal of Intelligent Procedures in Electrical Technology (2015) (20): 37-54.

[16] Lalouni S., Rekioua D., Idjdarene K., Tounzi A., Maximum Power Point Tracking Based Hybrid Hill-Climb Search Method Applied to Wind Energy Conversion System, Electric Power Components and Systems, (2015) 43 (8-10): 1028-1038

[17]Shin H.S., Xu C., Lee J.M., La J.D., Kim Y.S., MPPT Control Technique for a PMSG Wind Generation System by the Estimation of the Wind Speed, Proceeding of the IEEE/ICEMS (2012) 1-6.

[18]Subudhi B., Ogeti P.S., Sliding Mode Approach to Torque and Pitch Control for a Wind Energy System, Proceeding of the IEEE/INDICON (2012) 244-250.

[19]Savio M., Sasikumar M., Space Vector Control Scheme of Three Level ZSI Applied to Wind Energy Systems, International Journal of Engineering (2012) 25 (4): 275-282.

[20]Datta R., Ranganathan V.T., A Method of Tracking the Peak Power Points for a Variable Speed Wind Energy Conversion System, IEEE Transactions on Energy Conversion (2003) 18 (1): 163-168.

[21]Koutroulis E., Kalaitzakis K., Design of a Maximum Power Tracking System for Wind-Energy-Conversion A­p­­pl­ica­tions,IEEE Transaction on Industry Applications (2006) 53 (2): 486–494.

[22]Soetedjo A., Lomi A., Mulayanto W.P., Modeling of Wind Energy System with MPPT control, Proceeding of the IEEE/ ICEEI (2011)1-6.

[23]Zhensheng D.L., Wang W.H., Wang T., MPPT Control Strategy for off-Grid Wind Power System, Proceeding of the IEEE/PEDG (2010) 759-764.

[24]Tan K., Islam S., Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System without Mechanical Sensors, IEEE Transaction on Energy Conversion (2004) 19 (2): 392-399.

[25]Mahdavian M., Wattanapongsakorn N., Shahgholian Gh., Mozafarpoor S.H., Janghorbani M., Shariatmadar S.M., Maximum Power Point Tracking in Wind Energy Conversion Systems using Tracking Control System Based on Fuzzy Controller, Proceeding of the IEEE/ECTICON, Nakhon Ratchasima, Thailand (2014).

[26]Patsios C., Chaniotis A., Rotas M., Kladas A.G.,A Comparison of Maximum Power Point Tracking Control Te­c­hniques for Design of a Wi­n­d Energy Conversion System Including a Matrix C­o­nve­r­t­er, Ph.D. Thesis, Waterloo, Ontario, Cana­d­a (2008). Low- Power Variable- Speed Wind Gener­at­o­r­s, EPE Chapter Electric Drives Joint Symposium, (2009).

[27]Barakati S.M., Modeling and Controller Design of a Wi­n­d Energy Conversion System Including a Matrix C­o­nve­r­t­er, Ph.D. Thesis, Waterloo, Ontario, Cana­d­a (2008).

[28] Shahgholian G., Khani K., Moazzami M., Frequency Control in Autanamous Microgrid in the Presence of DFIG Based Wind Turbine, Journal of Intelligent Procedures in Electrical Technology (2015) 6 (23): 3-12.

[29] Mesemanolis A., Mademlis C., Kioskeridis I., Max­i­m­u­m Efficiency of a Wind Energy Conversion System with a PM Synchronous Generator, Proceeding of the IEEE/MEDPOWER (2010) 1-9.

[30] Faiz J., Hakimi-Tehrani A., Shahgholian G., Current Control Techniques for Wind Turbines, A Review, Journal of Electromotion (2012) 19 (3-4): 151-168.

[31] Nadhir A., Hiyama T., Maximum Power Point Tracking Based Optimal Control Wind Energy Conversion System, Proceeding of the IEEE/ACT (2010) 41-44.

[32] Pan C.T., Juan Y.L., A Novel Sensorless MPPT Cont­r­o­l­l­er for a High-Efficiency Micro Scale Wind Power Gen­er­a­t­ion System, IEEE Transactions on Energy Conversion (2010) 25 (1):207–216.

[33] Jain B., Jain S., Nema R.K., Control Strategies of Grid Interfaced Wind Energy Conversion System, An Overview, Renewable and Sustainable Energy Reviews (2015) 47: 983–996

[34]Haque M.E., Negnevitsky M., Muttaqi K.M., A Novel Control Strategy for a Variable-Speed Wind Turbine with a Permanent-Magnet Synchronous Generator, IEEE Transactions on Industry Applications (2010) 46 (1): 331-339.

[35]Sarvi M., Azarbara S., A Novel Maximum Power Point Tracking Method Based on Extension Theory for Wind Energy Conversion System, International Journal of Computer Science and Engineering Technology (2012) 3 (8): 294-303.

[36]Chen Z., Guerrero J.M., Blaabjerg F., A Review of the State of the Art of Power Electronics for Wind Turbines, IEEE Transactions on Power Electronics (2009)  24 (8): 1859-1875.

[37]Qiao W., Yang X., Gong X., Wind Speed and Rotor Position Sensorless Control for Direct-Drive PMG Wind Turbines, IEEE Transactions on Industry Applications (2012) 48 (1): 3-11.

[38]Chinchilla M., Amaltes S., Burgos J.C., Control of Permanent Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid, IEEE Transactions on Energy Conversion (2006) 21 (1): 130–135.

[39]Blaabjerg F., Liserre M., Ma K., Power Alectronics Converters for Wind  Turbine Systems, IEEE Transactions on Energy Conversion (2011) 23 (1):257-264.

[40]Elnaggar M.M., Fattah H.A.A., Elshafei A.L., Nume­r­i­c­al Optimization Algorithm for Maxi­m­u­m Power Point Tracking in Wind Energy Conv­er­sion System, Proceeding of the IEEE/CCA, (2012) 806-811.