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ABSTRACT    
The collision of two spheroidal drops in a shear flow is simulated 
in this paper using the finite difference/front tracking method. The 
influences of deformability, initial offset, and the size of drops on 
their collision dynamics are assessed. It is demonstrated that the 
non-dimensional relative trajectory of a pair of drops, ∆z/R, is 
enhanced gradually as they approach and then, gains a maximum 
value and finally, reaches a new constant value after separation. 
An enhancement in the capillary number results in an increase in 
the deformation of the drops. The deformation and the time 
required for the collision of two drops are reduced as their initial 
offset is enhanced. It is revealed that as the ratio of major 
diameter to minor diameter of spheroidal drops is intensified, their 
deformation is enhanced. 
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1. Introduction 

Interaction between two deformable 

particles plays a crucial role in determining 

the behavior of emulsions. Besides, the 

assessment of the migration of a single 

deformable drop/bubble leads to the 

understanding of their collision dynamics 

[1]. The study of drop deformation and 

breakup was performed by Taylor [2] in 

1932. Taylor’s experiments revealed the 

existence of steady rounded and pointed 
drops, as well as bursting drops of the same 

type, depending on the viscosity ratio and 

the capillary number. In 1992, Unverdi and 
Tryggvason [3] describes a front-tracking 
method to simulate unsteady multi-phase flows 
in which a sharp interface or a front separates 
incompressible fluid of different densities and 
viscosities. In this method, a conservative finite 
difference is employed for the approximation on 
a stationary grid and the interface is explicitly 
represented by a separate, unstructured grid that 
moves through the stationary grid. The effect of 
surfactants on the deformation of drops and 
bubbles was examined by Lee and Pozrikidis 
[4]. Their results demonstrated the effect of the 
surfactant on the drop deformation and structure 
of the flow and showed the possibility of 
interface immobilization due to the Marangoni 
effect even for moderate variations in the 
surfactant concentration. Loewenberg and 
Hinch [5] evaluated the interaction between a 
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pair of deformable drops in a simple shear flow 
by using a boundary integral formulation. They 
observed that the interactions do not promote 
the breakup of the drops. Moreover, the 
lubrication gap that separates the two drops can 
decrease rapidly in the extensional quadrant of 
the flow for certain viscosity ratios. Guido and 
Simone [6] studied the collision of two equal-
sized drops which were immersed in an 
immiscible liquid phase undergoing a shear flow 
for a range of the capillary number.  They found 
the distance between the drop centers along the 
velocity gradient direction is enhanced 
irreversibly after the collision. They also 
indicated the evolution of drop shape during the 
collision basis on a deformation parameter and 
the angle between the drop major axis and the 
velocity gradient direction. Shardt et al. [7] 
simulated the collision of two equal-sized 
droplets in simple shear flow by using the lattice 
Boltzmann method and determined the critical 
capillary number for coalescence. It was 
observed that the critical capillary number is 
decreased when the droplet size is increased. 
Also, they demonstrated that the Peclet number 
affects the collision dynamics of drops. Lac and 
Bissel [8] assessed the collision of two identical 
capsules which consist of a viscous liquid drop 
and an elastic membrane in simple shear flow 
by using a boundary integral formulation. They 
showed that after the capsules cross each other, 
the hydrodynamic interaction is specified by an 
irreversible cross-flow displacement. It was 
shown the capsules exhibit negative deflections 
which displace them to closer streamlines. 
Bayareh and Mortazavi [9] simulated the three-
dimensional migration of a spherical drop in a 
simple shear flow and revealed that a drop 
migrates towards the center of the channel and 
the migration rate depends on the surface 
tension and the fluid velocity. The duration of 
the migration increases by enhancing the Weber 
number and reducing the Reynolds number. 
Bayareh and Mortazavi [10] considered the 
collision of two equal-sized drops in an 
immiscible phase undergoing a shear flow over 
a range of the viscosity ratio by using the finite 
difference/front tracking method. They revealed 
that the distance between drop centers along the 
velocity gradient direction, i.e. ∆z, is enhanced 
after the collision and reaches a new constant 
value after separation. Also, ∆z is increased 

during the interaction by enhancing the initial 
offset. Based on their investigations, it was 
shown that the maximum deformation is the 
same for equal drop sizes and when the size of 
drops is reduced, the deformation is decreased. 
Moreover, the drops rotate more quickly when 
the initial offset increases. They investigated the 
effect of the viscosity ratio and showed that 
when the viscosity ratio is intensified, the 
rotation of drops is more slowly and the point of 
separation of drops occurs with delay. Magna 
and Stone [11] investigated the time-dependent 
interactions between two buoyancy-driven 
deformable drops at low Reynolds numbers. 
The interaction between two horizontally offset 
drops was studied experimentally and boundary 
integral simulations. It was shown that the 
axisymmetric drop configuration is stable for 
sufficiently deformable drops. Moreover, three 
modes for film drainage between drops were 
introduced as rapid drainage, uniform drainage, 
and dimple formation. Yoon et al. [12] studied 
the coalescence of two equal-sized deformable 
drops in an axisymmetric flow by using the 
boundary integral method. It was observed that 
the collision of drops exhibits two distinctively 
different regimes. At low capillary numbers, the 
interface of thin film between the colliding 
drops remains almost spherical up to the point 
of film rupture, and the drainage time is 
relatively short because a steep pressure 
gradient is formed at the center of the film. At 
high capillary numbers, the film becomes 
dimpled at an early stage of the collision process 
and the rate of the film drainage significantly 
slows down after the dimple is completely 
formed. Chen et al. [13] investigated 
experimentally the effect of confinement on the 
coalescence of Newtonian droplets in simple 
shear flow. The experimental result identified 
parameter ranges over which the transition from 
coalescence to non-coalescence occurs. 

The interaction between drops/bubbles in 
various Newtonian and non-Newtonian fluids 
has been also considered in recent years. 
Mirsandi et al. [14] analyzed the collision 
between two bubbles in a viscoelastic liquid 
and demonstrated that the bubbles repel at low 
Reynolds numbers and attract each other at 
moderate and high Reynolds numbers. Balla et 
al. [15] considered the attractive and repulsive 
treatments of two spherical bubbles ascending 
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side-by-side in a non-isothermal fluid and 
revealed that they keep their spherical shape 
when the Weber number is low. Javier et al. 
[16] evaluated the interaction between two 
bubbles created due to an underwater explosive 
numerically and experimentally and found that 
the amount of impulse is dependent on the 
location and symmetry of collapse. Zhang et al. 
[17] calculated the interaction force between a 
particle and an air bubble or a water droplet 
and showed that strong and weak adhesion 
occurs between particle/droplet and 
particle/bubble, respectively. Yan et al. [18] 
examined the bubbles/droplets attachment in 
oily water. It was demonstrated that their size 
enhancement augments the spreading time.          

Even though the interaction of spherical 
drops/bubbles has been evaluated numerically 
and experimentally, the collision of non-
spherical deformable particles has not been 
considered. Experimental investigations have 
revealed that the shape of liquid drops can be 
changed during the interaction with the carrier 
phase [19, 20]. Numerical studies have 
demonstrated that the surface of drops is 
related to the local mean curvature due to the 
application of non-uniform heat fluxes on their 
surface [21, 22]. It can be concluded that the 
non-uniform distribution of heat fluxes on their 
surface leads to the non-uniform distribution of 
temperature on spheroidal drops during the 
heating and evaporation processes [23]. Some 
investigators analyzed the Stokes and 
turbulence flow around prolate spheroids [24], 
the evaporation of spheroidal drops [25], the 
interaction between a spheroidal drop and a 

wall [26], the impact of deviation from the 
spherical shape of drops on mass transport 
equation [27], the motion of a spheroidal drop 
suspended in a fluid [28], and collision 
between two spheroidal particles [29]. The 
understanding of this phenomenon is crucial 
because there are many deformable particles 
with non-spherical shapes like spheroidal ones. 
In this study, the collision of two spheroidal 
drops is simulated using the finite-
difference/front tracking method to evaluate 
the impact of deformability (capillary number), 
their initial offset, and initial size on the 
collision dynamics (Fig. 1). 

2. Governing equations 

The Navier-Stokes equations in conservative 
form govern the interaction between two 
deformable drops in a simple shear flow [30]: 

 
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This equation is valid for the entire flow 
field, even if the density field, ρ, and the 
viscosity field, µ, change discontinuously. 
Here, u is the velocity vector, P is the pressure 
and f is the body force. δβ is a function that 
refers to the dimensions of flows. k´ is the 
curvature of flows, n is the unit vector normal 
to the front, x shows the Eulerian coordinate, 
and x´ indicates the coordinate of a point on the 
drop, i.e. Lagrangian coordinate. 

 

Fig. 1. Schematic of the interaction between a pair of deformable drops in shear flow (Offset = ∆/R, where R is 
the equivalent radius of a spherical drop with the same surface area). 
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Mass conservation is also given as follows: 

ρ
.ρ 0

t


 


u (2) 

The density is constant while the flow is 
incompressible, therefore: 

Dρ
0

Dt
 (3) 

Thus, the continuity equation reduces to 

. 0 u (4) 

Moreover, the viscosity is considered constant: 

Dμ
0

Dt
 (5) 

The collision of drops in simple shear flow is 
affected by several non-dimensional parameters. 
The first dimensionless parameter is the bulk 
Reynolds number which is defined as 

2

o
b

o

ρ GH
Re

μ
 (6) 

where H is the height of the channel and G is 
defined as the shear ratio is given by 

t bu u
G

H


 (7) 

where ut and ub are the velocities of the top 
and bottom walls, respectively. 

The second dimensionless parameter is the 
capillary number, which is given by 

o eμ Gd
Ca

σ
 (8) 

Here, de is the diameter of a spherical that 
has equal volume with the volume of an 
ellipsoidal drop and σ is the surface tension 
coefficient. 

The density ratio is also defined as  

i

o

ρ
η

ρ
 (9) 

where ρi and ρo are the density of drop and 
ambient fluid, respectively.  

The viscosity ratio is calculated using  

i

o

μ
λ

μ
 (10) 

where μi and μo are the viscosity of drop and 
ambient fluid, respectively. 

3. Numerical method 

The multiphase flow problems are simulated 
using various methods, including the MAC 
method, which uses marked particles to identify 
each fluid, the volume of fluid (VOF) method, 
which utilizes a mark function, Lagrangian 
methods that follow the fluid grid, the front 
tracking method, which a separate front marks 
the interface, but a stationary grid is employed 
for the fluid of each phase (Fig. 2).  

The Front-tracking method is used to 
simulate the interaction of two drops in simple 
shear flow which is a combination of a 
stationary and Lagrangian grid. 

The Navier-Stokes equations are solved on 
a fixed grid and the surface tension is 
calculated on the boundary of the front. The 
surface quantity, Qf, is expressed in units per 
area, and the grid value, Qg, should be given in 
terms of units per volume; hence 

  

   f g

s v

s ds dv 
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(11) 

 

Fig. 2. The position of the Lagrangian grid on a stationary Eulerian grid for multiphase flows. 
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The force that is related to surface tension 
on each element of the front is calculated by 

σ s

s

δ σk d


 F n 
(12) 

The average surface curvature can be 
written as 

 k   n n n (13) 

Then, the force on each element’s surface is 
calculated using 

 σ

δA δA

s

σ k  dA σ  dA

σ  ds

   

 

 F n n n

t n˜
 (14) 

Here, t and n are the tangential and normal 
vectors to each element. 

4. Results 

4.1. Grid study and validation 

To perform a grid study, the dimensionless 
amount of ∆z is calculated for different grid 
resolutions of 32×32, 64×64, 128×128, and 
256×256. It is found that the grid with 1282 
nodes is sufficient for the simulations. Besides, 
for the verification of numerical simulations, the 
present results are compared with the 
experimental data of Guido and Simeone [6] 
(Fig. 3) who considered the collision between 

two spherical drops. In this figure, the amounts 
of ∆z/R are plotted as a function of ∆x/R for an 
initial offset of 0.4 and λ=1. It is observed that 
∆z enhances and reaches a maximum value after 
approaching and contacting drops with each 
other. After separation, it has a constant value. 

4.2. Interaction between a pair of spheroidal 
drops 

To simulate the collision between two 
spheroidal drops, their centers are not in a line 
initially. The center of the front drop is slightly 
lower than the middle of the line between the 
two drops and the center of the rear one is 
slightly higher than the middle of the mentioned 
line. This geometry is selected to recognize the 
physics of the collision. The difference in the 
distance between the centers of the drops results 
in the relative trajectory of the two drops along 
the x and z axes which are expressed in terms of 
the differences ∆z=z2-z1 and ∆x=x2-x1, where xi 
and zi are the center of mass coordinates of the 
ith drop. It should be pointed out that the 
difference between the y-coordinates of the two 
drop centers is zero. When two spheroidal drops 
collide with each other in simple shear flow, 
five modes can be determined: approach, 
collision, slide, tumbling, and separation. For 
instance, Fig. 4 demonstrates the sequences 1-5 
when Ca = 0.2, offset = 2, and λ = η = 1.  

 

Fig. 3. The variations of ∆z/R versus ∆x/R for Ca = 0.13, Reb=10, and λ = 0.25. 
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Fig. 4. Sequences (1-5) exhibiting the binary collision of drops in simple shear flow when Ca = 0.2, offset = 2, 
and λ = η = 1. 

4.3. Effect of deformability 

The deformability of drops can be evaluated by 
the capillary number. Figure 5 illustrates the 
values of ∆z/R as a function of dimensionless 
time for different capillary numbers during the 
approach, collision, and separation. As can be 
seen, ∆z/R is enhanced gradually as the 
droplets approach and then reaches a maximum 
value and finally, reaches a new constant value 
after separation. Armandoost et al. [31] 
reported that the drop deformation is enhanced 
by increasing the capillary number or 

decreasing surface tension. Higher deformation 
leads to the drops becoming closer to each 
other and their centers are placed at a closer 
distance during the collision process. 

Figure 6 illustrates the deformations of the 
drops in the tumbling mode for different 
capillary numbers. The tumbling mode is one 
of the pressure stages of the collision between 
two drops. The capillary number expresses the 
ratio of viscosity to surface tension. Therefore, 
the deformation of the drops increases with the 
capillary number. 

 

Fig. 5. Relative trajectory of two interacting drops in shear flow for different capillary numbers when Reb = 10 
and λ = η = 1. 

 

Fig. 6. Tumbling mode of two deformable drops in simple shear flow when Reb = 10, η = λ = 1, and (a) Ca = 
0.05, (b) Ca = 0.1, (c) Ca = 0.2, and (d) Ca=0.3. 
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Figure 7 demonstrates the sequences (1-5) 
of the collision of two drops, indicating that the 
deformation of drops gradually increases 
during the approach stage and reaches a 
maximum value (point 3). After that, it reaches 
a minimum value (point 4) and a second 
maximum value (point 5), which is smaller 
than the first maximum one. Finally, it reaches 
a constant value. 

The relative velocity between the centers of 
the drops in the flow direction (ΔVx) in terms of 
Δx/R is shown in Fig. 8a. When the drops start to 
collide, ΔVx increases rapidly, showing their 
acceleration during tumbling mode. It can also be 
seen that the final value of ΔVx is greater than its 
initial value due to the increase in their lateral 

distance. The negative value of ΔVx is due to the 
small initial distance between the centers of the 
drops in the x-direction. Due to the presence of 
the front drop, the trailing drop cannot move 
under the influence of the shear flow, and only 
the front drop can move in the flow direction. 
When the drops are deformed, the rear one 
reaches a necessary initial acceleration and ΔVx 
becomes positive. For this reason, the distance 
between the centers of the drops increases.  
Figure 8b depicts the relative velocity between 
the centers of the droplets in the direction of the 
velocity gradient (ΔVz) in terms of Δx/R. The 
value of ΔVz before and after the collision is 
zero. It is positive during the tumbling mode and 
negative when they are separated. 

 

Fig. 7. Deformation of two interacting drops as a function of dimensionless time when λ = η = 1 and Reb = 10 for 
different capillary numbers. 

  

(a) (b) 

Fig. 8. Dimensionless amounts of (a) ΔVx and (b) ΔVz versus ∆x/R for Reb = 10, λ = η = 1, and different 
capillary numbers. 
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 4.4. Effect of initial offset and size of drops 

The initial offset is defined as the ratio of the 
half-shortest distance between the centers of 
the drops (Δ) to the equivalent radius of the 
undeformed drops (Fig. 1). Fig. 9a illustrates 
the non-dimensional lateral distance between 
two drops, i.e. ΔVz, in terms of Δx/R for 
different values of the initial offset. The final 
value of Δz/R for offsets 4.2, 5.5, and 5.7 is 
equal to 0.55, 0.57, and 0.61, respectively. 
These values are greater than the initial value 
of Δz/R. In other words, if the drops collide 
with each other again, they will gain a larger 
lateral distance, indicating that this 
phenomenon is irreversible. Fig. 9b shows the 

variations of deformation versus dimensionless 
time. It can be seen that as the initial offset is 
reduced, the deformation and the time required 
for the droplets to approach each other are 
enhanced. Since the difference between the 
values of the initial offset is small, the 
maximum deformation is approximately the 
same.  

To evaluate the impact of the size of drops 
on their collision dynamics, the amount of 
deformation is calculated for two different 
ratios of L/B in Fig. 9c when the initial offset 
is 5.7. As can be seen, the larger the value of 
L/B, the larger the deformation. 

  

(a) (b) 

 

(c) 

Fig. 9. (a) Dimensionless amounts of Δz versus ∆x/R, and (b) deformation in terms of non-dimensional time for 
Reb = 10, λ = η = 1, and different amounts of initial offset. (c) The deformation versus dimensionless time for 

Reb = 10, Ca = 0. 075, λ = η = 1, and different sizes of drops.  
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5. Conclusions 

Simulation of the binary collision of 
spherical/non-spherical drops in shear flow is 
very important. In the present paper, the 
interaction between two spheroidal drops is 
simulated using the finite difference/front 
tracking method. It is found that the relative 
trajectory of the center of drops is enhanced 
due to their collision. Also, the deformation of 
the droplets causes they do not merge. The 
interaction of two spheroidal drops involves 
three stages, like spherical ones: approach, 
collision, and separation. The results 
demonstrate that the relative trajectory of the 
drops is enhanced gradually as they approach, 
then reaches a maximum value, and then 
reaches a new constant value after separation. 
This lateral distance is reduced with the 
capillary number. An increment in the capillary 
number causes an enhancement in the 
deformation of the drops. When the drops 
collide, their relative velocity in the flow 
direction is enhanced rapidly, indicating that 
they accelerate during the tumbling state. As 
the initial offset becomes larger, the drops 
rotate faster and the time required for collision 
is reduced. Finally, it is demonstrated that the 
larger the value of L/B, the larger the 
deformation. 
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