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ABSTRACT				

There	 is	an	 increasing	need	 to	 forecast	power	generated	by	photovoltaic	
sources	 in	 day‐ahead	 power	 system	 operation.	 The	 electrical	 energy	
generated	by	these	renewable	sources	is	an	uncertain	variable	and	depends	
on	 solar	 irradiance,	 which	 is	 out	 of	 control	 and	 depends	 on	 climate	
conditions.	The	stochastic	programming	based	on	various	scenarios	 is	an	
efficient	way	 to	deal	with	 such	uncertainties.	 In	 this	 research	paper,	 the	
long	term	hourly	recorded	irradiance	data	in	15	past	years	are	applied	to	
generate	 the	 next	 day's	 irradiance	 scenarios.	 Irradiance	 determines	 the	
operating	point	of	PV	panel	as	well	as	the	generated	electrical	power.	Also,	
the	 scenario	 generation	 method	 based	 on	 autoregressive	 and	 moving	
average	time	series	 is	proposed.	For	decreasing	the	number	of	scenarios,	
backward	 reduction	 based	 on	 Kantorovich	 distance	 is	 applied.	 The	
obtained	results	confirm	the	accuracy	and	ability	of	the	proposed	method	in	
forecasting	the	relevant	data.	
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1. Introduction 

In recent years, using renewable energy 
sources has extensively increased. This is 
mainly due to reduction of fuel resources and 
simultaneously low operation costs and 
environmental impacts as well as less pollution 
of renewable resources. Solar energy is the 
most prevalent renewable source because of its 
availability. There is a need in day-ahead 
power system operation to forecast the amount 
of electrical power generated by each source. 
Uncertainty in the amount of photovoltaic cell 
output power, makes the power system 
operation encounter with some challenges. The 
amount of produced power by photovoltaic 
source depends on solar irradiance. Prior 
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investigations have implemented diverse 
approaches to solar irradiance forecasting. 
They could be divided into two general 
categories: weather-based (sky conditions) as 
physical methods [1-3], and methods based 
on recorded historical data. As a sample ref. 
[4] applied Markov Switching Model for 
point estimation irradiance forecast based on 
historical data. 

In another classification, solar forecasting 
methods are classified into five classes [5] 
concluding: time series; regression; 
numerical weather prediction; machine 
learning; and image-based forecasting. 

A method is classified as a time series 
method if it falls in one of three families of 
models, namely, autoregressive integrated 
moving average (ARIMA), exponential 
smoothing (ETS), and generalized 
autoregressive conditional heteroskedasticity 
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(GARCH)[5]; Regression is a statistical 
process for estimating the relationships 
among variables [5]; Numerical Weather 
Prediction (NWP) models directly simulate 
the irradiance fluxes at multiple levels in the 
atmosphere, separately considering the 
shortwave and longwave parts of the solar 
spectrum [5]; Machine learning is a branch 
of artificial intelligence [6]. Artificial Neural 
Network (ANN) is one of machine learning 
methods applied to forecast solar irradiance 
[3,7,8]; In image-based forecasting sky or 
earth, imagery can add predictive skill 
because it provides advance warning of 
approaching clouds at a lead time of several 
minutes to hours. This lead time far exceeds 
that of a single ground-based radiometer [5]. 
Sky image-based forecasting methods suffer 
from short-time forecast duration up to one 
hour [9]. 

In this context, Ref. [10] applied novel 
semi-empiric models based on Angstrom-
Prescott (A-P) equations, and ref. [11] 
applied the Autoregressive (AR) model 
based on HelioClim-3 images to forecast 
irradiance, but both were used for short-time 
prediction up to one hour. 

The literature survey reveals that all of 
the mentioned references are based on 
applying the point estimation methods, 
which are belong to deterministic forecasting 
category. Regarding stochastic nature of 
physical phenomena, even the most extreme 
models can not accurately predict the amount 
of solar radiation. Stochastic analysis based 
on scenarios introduced in this study re 
capable to be applied to day-ahead stochastic 
forecasting of solar irradiance, based on 
historical data. They are mainly free from 
two limitations of the mentioned point 
estimate deterministic methods: restriction of 
forecasting duration; and the importance of 
the precision of forecasted point. 

Actual recorded historical amount of 
irradiance in the same days of the past years 
are available. Global Horizontal Irradiance 
(GHI) is the total amount of irradiance 
received on a horizontal surface is applied. 
These are datum for forecasting tomorrow's 
irradiance scenarios in each hour. Monte 
Carlo simulation method (MCS) can be 
easily applied for this purpose, but the 

relevant high amount of calculations is not 
reasonable for such a problem with high 
amount of data. In this paper, autoregressive 
and Moving Average (ARMA) time series 
based analysis, has been applied for 
generating scenarios. This scenario 
generation method will have a lower 
computational burden at the same high 
precision.  

These scenarios are possible amounts of 
the uncertain variable with known 
possibilities. A high number of scenarios 
brings a high amount of calculations. 
Certainly there are some scenarios with very 
low possibility and those relevant scenarios 
results' will be very close together. 
Therefore, scenario reduction procedure is 
needed to eliminate such low effect scenarios 
to decrease the calculations burden.  

Also, we applied the backward reduction 
based on Kantorovich distance [12] for 
eliminating same and low probability 
scenarios. This scenario-based photovoltaic 
source uncertainty analysis process can be 
applied in network stochastic programming 
to fraction of stochastic framework to 
estimated deterministic parts. 

The reminder of this paper is organized as 
follows. Section two describes the applied 
methods in this work. That contains the 
scenario generation and reduction methods 
that applied, and the method of converting 
irradiance to PV cell output power. the 
irradiance data from Denver, Centennial 
measurement station applied to forecast 
tomorrow irradiance as a case study. The 
results in part Ⅲ confirm the robustness and 
accuracy of the proposed method. 

 
2.Mathematical Formulation 

 
2.1 Scenario generation 

 
For generating the scenarios, time-series 
based method, ARMA, is applied. The 
importance of ARMA processes is due to the 
fact that every stationary process can be 
approximated arbitrarily well by an ARMA 
process [13]. An ARMA(p, q) process Y is 
mathematically expressed as [14]: 

1 1

p q

t i t iit t i
i i

y y    
 

      
(1)
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In which the index t shows time step, ߝ௧ 
stands for an uncorrelated Norma stochastic 
process with mean zero and variance ߪఌଶ, 
referred as white noise, innovation term, or 
error term, ܹܰሺ0,  ଶሻ. p and q show theߪ
order of AR(p), and MA(q). The procedure to 
generate a set of scenarios for stochastic 
process Y is based on the sampling of the 
error terms from relevant distribution 
,௧~ܰሺ0ߝ   .ଶሻߪ
This process will be continued until the 
predefined number of scenarios are 
generated. The small number of generated 
scenarios reduces the accuracy of response 
as well as the final estimation. On the other 
hand, high number of scenarios bring heavy 
data computations. In order to achieve the 
correct answer and reduce the computational 
burden at the same time, scenarios 
describing all the circumstances must be 
screened. That means that scenarios with a 
very low probability and similar scenarios 
must be eliminated. This requires defining a 
correct process to reduction of the same 
scenarios. 
 

2.2 Scenario Reduction 
 
In the following, the reduction algorithm, 
which is based on "Kantorovich Distance", is 
detailed [15]. Let ்݊ denotes the number of 
stages in the optimization problem and ݊ௌ 
determines the number of scenarios. It is 
assumed that all scenarios have a common 
root in a one-stage tree where branching 
occurs only after the root node. A scenario, 
,ሺ௜ሻߦ ݅ ∈ ሼ1,… , ݊ௌሽ is defined as a sequence 
of nodes of the tree as follows: 

( ) ( ) ( )
0 1( , ,..., ), 1,...,

T

i i i
n Si n      (2)

଴ߟ ൌ ଴ߟ
ሺ௜ሻ, ∀௜ denotes the root of all 

scenarios, and ߟ௝
ሺ௜ሻ determines the leaf of 

scenario i  within the scenario tree on stage 

݆, ݆ ∈ ሼ1,… , ்݊ሽ. For each node,	ߟ௝
ሺ௜ሻ, a vector 

௝ܲ
ሺ௜ሻ ∈ ܴ௡ೕ

ು
 of parameters is given. Each node 

on stage j has ௝݊
௣ parameters. The probability 

to get from stage j to stage j+1 within the 

scenario i, from ߟ௝
ሺ௜ሻ to ߟ௝ାଵ

ሺ௜ሻ  , is denoted by 

௝,௝ାଵߨ
ሺ௜ሻ . Thus the probability for the whole 

scenario ߦሺ௜ሻ is given by: 
1

( ) ( ) ( )
, 1 0,1

0

Tn
i i i

j j
j

  





   
 

(3)

The distance between two scenarios ߦሺ௜ሻ and 
 :ሺ௜ሻ is defined asߦ

1/2

( ) ( ) ( ) ( ) 2

0

( , ) ( )
Tn

i j i j
k k

k

d P P 


 
  
 
  

 
(4)

The relevant algorithm for deleting 
scenarios is detailed in below. This deleting 
procedure is applied iteratively, deleting one 
scenario in each step and consequently 
changing the probabilities of other scenarios, 
until a given number of scenarios is 
remaining. 
(a)Determining the scenarios to be deleted: 

Remove scenario ߦሺ௦
∗ሻ, 

* {1,..., }Ss n  
satisfying: 
ሺ௦ߨ

∗ሻ.min
௦ஷ௦∗

ሼ݀ሺߦሺ௦ሻ, ሺ௦ߦ
∗ሻሽ

ൌ min
௠∈ሼ௜,…,௡ೞሽ

ሼߨሺ௠ሻ. min
௡ஷ௠

ሾ݀൫ߦሺ௡ሻ, ሺ௠ሻ൯ሿሽߦ

(5)

According to the defined distance, 
scenarios that are near to the others will be 
deleted; also, the scenarios having a small 
probability are more likely to be deleted than 
others.  
(b) Changing the number of scenarios: 

: 1S Sn n    
(c) Changing the probability of the scenario 
ሺ௦ߦ ሺ௦෤ሻ , that is the nearest toߦ

∗ሻ : 
 * *

*

( ) ( ) ( ) ( )( , ) min ( , )s s s s

s s
d d   


  (6)

Set 
  *( ) ( ) ( )

0,1 0,1 0,1:s s s   
 ; 

This has to be done, as the sum of all 
probabilities of the remaining scenarios 
should remain equal to 1 and the only 
branching occurs at stage 0 at the root node.  
(d) Continuing with step (a) as long as 
݊௦ ൐ ܰ . Otherwise, STOP. 

 
2.3. Irradiance to PV cell output power 

 
A single-diode PV module model [16] is 
shown in Fig.1. It consists of a current 
source, a diode, and series and parallel 
resistances. 
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PV cell equivalent circuit output current I, 
can be expressed as a function of the module 
output voltage V, as follows [17]: 

1
2

1 exp 1V sc
oc

V V
I I C I

C V

                 

 (7)

where: 

 
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V T R I
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


      





     

     

  
  

(8)

  Current change temperature coefficient at 
reference insolation (Amps/C°), 
  Voltage change temperature coefficient at 
reference insolation (Volts/C°), 
I  Module Current (Amps), 

mpI
 Module Maximum Power Current 

(Amps), 

scI
 Module Short Circuit Current (Amps), 

S  Total Tilt Insolation (kWh/m^2), 

refS
 Reference Insolation (kWh/m^2), 

sR
 Module Series Resistance (Ohms), 

T  Cell Temperature (C°), 

AT
 Ambient Temperature (C°), 

refT
 Reference Temperature (C°), 

T  Change in Cell Temperature (C°), 
V  Module Voltage (Volts), 

mpV
 Module Maximum Power Voltage 

(Volts), 

ocV
 Module Open Circuit Voltage (Volts). 

The average power output from a PV cell is 
calculated using the following equation in the 
integral form 

( ) ( )pvP P I f I dI    (9) 

where ݂ሺܫሻ is irradiance probability density 
function. 

 
2.4.Flowchart 

 
The general proposed flowchart concluding the 
different steps of generating and reducing 
scenarios from irradiance historical recorded 
data is shown in Fig.2. Each step described in 
the following. 

Step 1: Input data  
Irradiance historical recorded data for each 
hour of the day used as input data. 

Step 2: Weibulll distribution fitting 
For 'a' as scale parameter and 'b' as shape 
parameter, Weibulll probability density 
function is defined as: 

݂ሺݔ|ܽ, ܾሻ ൌ ܾ. ܽି௕. .௕ିଵݔ ݁ିሺ
௫
௔ሻ

ൌ
ܾ
ܽ
. ሺ
ݔ
ܽ
ሻ௕ିଵ. ݁ିሺ

௫
௔ሻ 

(10)

The input historical data for each hour is 
fitted to Weibulll PDF. The reason for 
selecting the Weibulll distribution is due to 
its positive value for positive values of x, and 
is zero otherwise. Furthermore, it has enough 
flexibility to match positive irradiance data. 

Step 3: The order of ARMA model 
The ACF and PACF plots of irradiance 
historical data for each hour of the day were

 

 
Fig.1. Single-diode model of a PV source including series and parallel resistances 
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Fig. 2. Flowchart of the generating scenarios from historical data 

used to diagnose the order of ARMA(p,q) for 
each hour.  

Step 4: 
Ns random samples from white noise as an 
error term generates Ns time-series amounts as 
scenarios for each hour.  

Step 5: Fitting generated time series 
When time-series amounts as scenarios 
generated, Norma function is fitted as PDF of 
them. As ARMA time series have Norma 
distribution. 

Step 6: Time series CDF 
CDF of generated scenarios is being 
calculated, based on the PDF calculated in the 
previous step. 

Step 7.a: Scenario transformation 
Random irradiance scenarios are transformed 
into actual solar irradiances by distribution 
transformation. CDF calculated in step 6, came 
from a Norma distributed PDF of generated 
time-series amounts. That must be transformed 
into actual irradiance amounts. Scale and shape 
parameters in step 2 are applied to take inverse 
from this CDF. The results are actual 
irradiance scenarios with Weibulll probability 
distribution. 
Transfer function is: 

1
[ ( )]

y
Irradiance YF

  (11)

In this transformation ܨ௬
ሺ௒ሻ is CDF of 

generated scenarios from time-series with 

Norma PDF, and ( ) �  is CDF of actual 
irradiance historical data with Weibulll PDF.  
This process is done for each hour of day.  

Step 7.b: Irradiance to power 

If ܧሺ
ௐ

௠మሻ be the solar irradiance, since 
ா

ாೝ೐೑
ൌ

ௌ

ௌೝ೐೑
, it can be applied in Eq.(8). Since based on 

Table (1), ܧ௥௘௙equals to 800(W/m^2), for one 
hour period ܵ௥௘௙ will be equal to 
0.8(kWh/m^2). That is applied for calculation 
of T in Eq.(8). Using Eqs. (7), (8), and (9) 
irradiance scenarios were converted to PV cell 
output power scenarios.  

Step 8: Scenario Reduction 
Based on the process described in part Ⅱ.B, 
scenarios are reduced from 1000# to 10#.  

 
3.Case study simulation 
 
The recorded solar irradiance data as historical 
data for all days of the year, in all day hours, 
from 1999 to 2005, is available to the public at 
the measurement station, Denver/Centennial 
[18]. So, in this research a special day of 2005 
is considered here. August 10, 2005 is selected 
as the sample day. Due to the dependence of 

      Scenario G eneration Process

Diagnose the Order 
of ARMA(p,q)

Time Series Generation

Calculate CDF of 
Generated Time Series

Convert to Actual 
Irradiance Scenarios

Scenario Reduction 
Process

Fit Normal Function to 
the Amount of Generated 

Time Series

Step 2 Step 3 Step 4

Step 7.a

Step 5

Step 8

Step 1

Input Irradiance 
Historical Data

Fit Weibull Function to 
the Input data for PDF 

Calculation 

Convert Irradiance to PV 
Cell Output Power

Step 7.b Step 6
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solar irradiance on season and month of the 
year, applied historical data are based on Table 
1. So, there are 159 recorded historical data for 
each hour of tomorrow to generate scenarios. 

Thereafter, generation and reduction of 
scenarios for day-ahead PV cell output power 

stochastic programming is done based on 
available actual historical data. 

Parameters of the solar module, supposed to 
be installed in a microgrid are proposed in 
Table 2. 

 

Table 1. Historical data 

August 5, 1991 until August 15, 1991 11 data for each hour 

August 5, 1992 until August 15, 1992 11 data for each hour 

August 5, 1993, until August 15, 1993 11 data for each hour 

August 5, 1994 until August 15, 1994 11 data for each hour 

August 5, 1995 until August 15, 1995 11 data for each hour 

August 5, 1996 until August 15, 1996 11 data for each hour 

August 5, 1997 until August 15, 1997 11 data for each hour 

August 5, 1998 until August 15, 1998 11 data for each hour 

August 5, 1999 until August 15, 1999 11 data for each hour 

August 5, 2000 until August 15, 2000 11 data for each hour 

August 5, 2001 until August 15, 2001 11 data for each hour 

August 5, 2002 until August 15, 2002 11 data for each hour 

August 5, 2003 until August 15, 2003 11 data for each hour 

August 5, 2004 until August 15, 2004 11 data for each hour 

August 5, 2005 until August 9, 2005 5 data for each hour 
 

 

Table 2. Parameters of the solar module, Siemens SM110 [20] 

Electrical Parameter Value 

Rated  power, ௠ܲ௔௫  (W) 110

Rated current , ܫ௠௣ (A) 6.3

Rated voltage, ௠ܸ௣ (V) 17.5
Short circuit current,	ܫௌ஼  (A) 6.9

Open circuit voltage,	 ைܸ஼  (V) 21.7

Temp. coefficient of the short-circuit current, (Change of ISC
with temperature), α (mA/°C) 

+1.2  (+0.04%/°K) 

Temp. coefficient of the open-circuit voltage, (Change of VOC 
with temperature), β (Volts/ C°) 

-0.0775  (-0.34%/ K°) 

Reference Irradiance,	ܧ௥௘௙ (W/m^2) 1000
Reference temperature, ௥ܶ௘௙  (C°) 25
Ambient temperature, ஺ܶ (C°) 20
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3.1. Results 
 
Step 1: Input data  
Step 2: 

Figure 3 shows the histogram of fitting 
historical data at 12 pm to Weibulll 
distribution. Here, scale and shape parameters 
are 856.1658 and 6.0644, respectively. That 
was done for each hour of the day, and shape 
parameters extracted. 

Step 3: The order of ARMA model 
The ACF and PACF for irradiance historical 
data are plotted to diagnose the order of 
ARMA(p,q) for each hour of day. That is 
shown in Fig.4 for 12 pm. 
ACF and PACF plot shape changes for each 
hour of the day is reviewed in Table (3). 
Because, the ACF plot shape is geometric and 

PACF is being zero after 'p' lags, AR model is 
applied to generate time-series. 
for AR (P) model, Eq. (1) will be as: 

1

p

tit t i
i

y y 




 
(12)

Step 4: Time series generation 
For simplicity of the problem, AR(4) model is 
applied. For 12 pm, ߔଵ,ߔଶ,  ସ areߔ ଷ andߔ
0.5084, 0.1670, 0.0099 and 0.3022, 
respectively. MATLAB 'ar' function with the 
forward-backward approach is applied to 
estimate the model. The model white noise 
variance is 9.3091e+3. That was done for each 
hour of day. AR coefficients and white noise 
variance extracted for each hour. By taking 
1000 random samples from white noise as 
error term, 1000 time-series amount as 
scenarios are generated for each hour.

 
Fig.3. Fitting Weibulll PDF to irradiance historical recorded data at 12 pm 

 
Fig.4. ACF and PACF plot of historical data at 12 pm. (a) ACF, (b) PACF 
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Table 3. Irradiance historical data ACF and PACF plot shape for each hour of day 

PACF significant up to 'p' lags ACF plot shape Data for 'H' o'clock 

'72' Geometric '6' 
'86' (79th is dominant) Geometric '7' 

'87' Geometric '8' 
'137' Geometric '9' 

'79' (only 79) Geometric '10' 
'91' Geometric '11' 
'89' Geometric '12' 
'91' Geometric '13' 
'93' Geometric '14' 
'84' Geometric '15' 
'92' Geometric '16' 
'85' Geometric '17' 
'93' Geometric '18' 
'90' Geometric '19' 

 
Step 5: Fitting generated time series 

After generating time-series amounts as 
scenarios, Norma function is fitted as PDF of 
them. For 12 pm, mean and standard deviation 
are 916.9663 and 180.8115, respectively. That 
was done for each hour. 

Step 6: Time series CDF 

Based on the PDF calculated in step 5, CDF 
of generated scenarios is being calculated. 

Step 7.a: Actual irradiance scenarios is 
shown in Fig.5. 

Step 7.b: 
PV cell output power generated 

scenarios is shown in Fig.6. 

 

 

Fig.5. Generated Irradiance scenarios 
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Fig.6. PV cell output power scenarios 

 
Step 8: Scenario Reduction 

Irradiance and PV cell output power reduced 
scenarios are shown in Figs.7 and 8, 
respectively. 

August 10, 2005 actual irradiance amounts 
are as Table (4). Figure 9 shows irradiance 

scenarios generated from historical data, and 
actual hourly measured irradiance amounts in 
August 10, 2005. It can be seen that there is 
great accuracy in the method proposed and 
described in this research. 
 

 

Fig.7. Reduced irradiance scenarios 
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Fig.8. Reduced PV cell output power scenarios 

Table 4. August 10,2005 actual irradiance amount at each hour of day 
Hour Actual measured irradiance 

6 0 
7 182 
8 348 
9 445 
10 709 
11 841
12 559 
13 454 
14 141 
15 196 
16 101 
17 134 
18 58 
19 12 

 

 
Fig. 9. Comparison between actual irradiance and predicted amounts with generated scenarios distribution 
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4.Conclusion 
 
Previous studies reported on solar irradiance 
forecasting, are mainly based on applying 
deterministic methods (point estimation). This 
is despite the fact that due to the out of control 
sky condition changes, exact forecasting is 
impossible. The purpose of this study is to 
present a comprehensive method to meet 
irradiance and PV power forecast problem as a 
stochastic problem. In this paper generating 
irradiance scenarios based on ARMA time-
series is proposed. Reducing scenarios method 
based on Kantorovich distance is applied. The 
suggested technique is applied to recorded 
irradiance historical data, for forecasting next 
day. Converting irradiance amounts to PV cell 
output power was described, too. Comparing 
the results with the actual values demonstrated 
the ability of the proposed method inaccurate 
forecasting. The method can be applied for any 
number of parallel or series PV cells that 
contributes to PV module or PV array. The 
described method of generating and reducing 
scenarios in this paper can be easily applied to 
day-ahead stochastic programming with other 
uncertain sources like wind energy.  
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