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ABSTRACT    
The wind turbine power transmission system exploits a 
planetary gearbox due to its large power transmission. In 
comparison with the common rotating systems, the wind 
turbine (WT) gearbox is assumed a complex system. Therefore, 
condition monitoring and fault detection isolation (FDI) of such 
systems are not straightforward and conventional signal 
processing methods (e.g. Fast Fourier transform) are not 
applicable or do not have an acceptable output accuracy. This 
paper proposes a new FDI approach for wind turbines based on 
vibration signals’ signatures derived from the multivariate 
empirical mode decomposition (MEMD) algorithm. Vibration 
signals are measured from a 750 kW planetary wind turbine 
gearbox on a dynamometer test rig provided by National 
Renewable Energy Laboratory (NREL).  In WT applications, to 
gather enough data with high accuracy and to avoid losing 
local information, multiple sensors must be utilized to collect 
data from different locations of the gearbox yielding a multi-
sensory dataset. In standard EMD, joint information of multi-
sensory data will be lost. Additionally, the intrinsic mode 
function (IMF) groups may not have the same characteristic 
features. To capture cross information of the dataset and to 
remove the effect of noise on the output results, a noise-assisted 
MEMD (NA-MEMD) algorithm is employed. Vibration signal 
features are also extracted by using discrete wavelet transform 
(DWT). Three major faults of the WT gearbox are detected 
using NA-MEMD and a comparison between NA-MEMD and 
DWT methods confirms the capability of the NA-MEMD 
method. 
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1. Introduction  

Planetary gearboxes are widely used in 
mechanical transmission systems such as wind 

turbine drivetrains due to the large power 
transmission in a compact structure. Wind 
turbines are working in harsh conditions and 
random behaviors of the wind speed which may 
lead to failure and shutdown of the entire system 
[1]. Gearbox subsystem faults and failures are 

*corresponding author: Moosa Ayati 
School of Mechanical Engineering, College of 
Engineering, University of Tehran, Tehran, Iran 
Email: m.ayati@ut.ac.ir 

http://energyequipsys.ut.ac.ir/


272 Shahin Siahpour et al./ Energy Equip. Sys. / Vol. 10/No. 3/Sep. 2022 

the most frequent amongst wind turbine 
mechanical subsystems [2]. In many cases, 
without a proper maintenance system, the wind 
turbine would fail in almost five years while the 
wind turbine's average design life is 20 years 
[3]. Thus, powerful condition monitoring (CM) 
or FDI systems is vital for the safe and efficient 
operation of WT during its lifetime.  

There are many ways for FDI of wind turbine 
gearboxes, such as vibration analysis, acoustic 
emission, ultrasonic testing techniques, oil 
analysis and thermography [4]. Among these 
methods, vibration analysis is a commonly used 
approach for condition monitoring. The basic 
idea is that rotating machinery has specific 
vibration signatures and these signatures change 
when there is a fault in some parts of the 
machinery. In early studies, some of the 
conventional techniques such as skewness and 
kurtosis [3] or Cepstrum analysis [5] were used 
to extract fault features from the systems. These 
methods are mostly used when the system is 
operating at a constant speed [6]. Complex 
systems such as the wind turbine gearbox 
cannot be analyzed with these methods. Instead, 
more advantageous condition monitoring 
techniques such as short-time Fourier transform 
[7], wavelet transform [8], empirical mode 
decomposition (EMD)[9], and Hilbert-Huang 
transform [10] should be utilized.  

In wavelet transform, to determine wavelet 
coefficient, some wavelet bases are required to 
be chosen where results of the analysis are 
influenced by the choice of these bases. On the 
other hand, EMD is a self-adaptive nonlinear 
and nonstationary data analysis technique and 
does not require basis functions for analyzing 
signals. In the EMD algorithm, oscillatory 
modes work as the basis function and they are 
determined by raw signal rather than by pre-
defined functions. Thus, EMD is widely 
applicable in fault detection of systems and 
machinery[11,12]. Fang and Ming [13] 
investigated the EMD algorithm for fault 
detection of gearbox and exploited Hilbert 
transform to determine instantaneous 
frequencies. EMD algorithm decomposes 
nonlinear and nonstationary signals into some 
almost orthogonal and stationary time series 
representations of the signal, which are called 
intrinsic mode functions (IMFs) of the signal 
[14]. In order to prevent the mode mixing 

phenomenon for noisy signals, ensemble 
empirical mode decomposition (EEMD) can be 
employed[9,15]. 

Usually, in complex systems such as wind 
turbine gearbox, to obtain data more precisely 
instead of using one sensor, several sensors are 
used and placed in different locations of the 
system, yielding a multivariate signal. When 
dealing with multivariate signals by standard 
EMD algorithm, each signal is processed 
individually [16]. Extracting fault features from 
individual IMF groups causes some problems in 
the fault detection procedure. For instance, there 
is the possibility that decomposition results 
from different sensors do not match in 
frequency content or number of IMFs[17]. 
Another problem is that when each signal is 
treated individually, results cannot show the 
correlation information between signals[18].  

To cover the limitation of the standard EMD 
algorithm with multivariate signals, Rilling et 
al. proposed a bivariate EMD algorithm in 2007 
[19]. In this method, the local mean is calculated 
by mapping the bivariate signal in several 
directions and averaging the local mean of this 
projected signal. Tsoumas et al. [20] used this 
method to analyze the bivariate vibration signal 
of a rotor. Pursuing the bivariate idea, in 2010 
Rehman and Mandic [21] proposed trivariate 
EMD to deal with three-dimensional signals. 
This idea is generalized to multivariate EMD by 
Rehman [22] for n-dimensional signals. 
Multivariate EMD allows the processing of the 
n-dimensional signal (obtained from sensors 
located in different positions), simultaneously. 
MEMD solved the problems of processing each 
signal individually. Multivariate signals from 
multiple sensors provide joint information 
applicable in condition monitoring and fault 
detection of rotating machines [23] and bearings 
[18]. In the same situation as the univariate 
signal analysis, the mode mixing phenomenon 
is almost inevitable in the MEMD algorithm if 
the input signals are noisy. Noise-assisted 
MEMD (NA-MEMD) is proposed to eliminate 
the interference of noise in the MEMD 
algorithm [24]. 

In this paper, a novel fault detection and 
isolation procedure is proposed for extracting 
fault features from the wind turbine gearbox. 
NA-MEMD algorithm is used to extract fault 
features from the studied wind turbine gearbox. 
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Vibration signals are from a 750 kW planetary 
wind turbine gearbox on a dynamometer test rig 
provided by National Renewable Energy 
Laboratory (NREL). Since eight sensors are 
exploited for gathering vibration data, MEMD 
reveals its advantage over standard EMD. 
Besides the complexity of the system, three 
faults, i.e. High-speed stage, planetary stage, 
and high-speed stage bearings, are present in 
this system. Apart from fault signatures that 
exist in faulty signals in special frequencies, 
there are other features in the healthy signals 
related to the system dynamics and nature. 
Therefore, first, healthy signal characteristics 
are investigated and then compared with the 
faulty signal. To show the strength of the 
MEMD algorithm, fault features are also 
extracted by discrete wavelet transform (DWT) 
[25] and this comparison is made by a newly 
defined amplitude factor.   

The paper is organized as follows. Section 2 
explains the mathematics of the standard EMD 
algorithm and multivariate EMD. Section 3 
introduces the wind turbine gearbox that is used 
for this study and shows some mechanical 
characteristics (e.g. meshing frequency) and 
explains how vibration signals are measured and 
prepared. Section 4 presents the numerical 
results by applying the proposed FDI approach 
to the vibration signals of the gearbox. The 
conclusion is given in Section 5.  

2. Background of EMD 

2.1. Fundamentals of the EMD algorithm 

This method is firstly introduced by Huang et al. 
[26]. The basic idea of this method is that every 
signal consists of some intrinsic mode functions 
(IMF). Each of these IMFs must satisfy two 
conditions: (1) on the entire length of the IMFs, 
number of extrema and zero-crossings must be 
either equal or at most differ by one, and (2) at 
any point, the mean value of the envelope 
defined by local maxima and the envelope 
defined by the local minima is zero. The 
following steps are the process for obtaining 
IMFs of a signal which is called the sifting 
process [27]. 

1. Find upper envelope 𝑢(𝑡) and lower 
envelope 𝑙(𝑡) of signal 𝑥(𝑡) by 
connecting all the local maxima and the 

local minima, respectively. This 
connection is usually made as cubic 
spline interpolation of the extrema.  

2. Compute the average of the upper and 
lower envelope, 𝑚(𝑡) which is called 
envelope mean using 

 
   

2




u t l t
m t  (1) 

3. Compute ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) called 
“oscillatory mode”. 

4. Choose ℎ(𝑡) as IMF only if it satisfies the 
previously mentioned conditions of 
IMFs, or else treat ℎ(𝑡) as the signal 𝑥(𝑡) 
and repeat steps 1 to 3. This process must 
be done until ℎ(𝑡) satisfies IMF 
conditions. Then, name this IMF by 
𝑐1(𝑡). 

5. Subtract the IMF from the signal 𝑥(𝑡) 
which results in the residual signal 𝑟1(𝑡): 

     1 1 r t x t c t  (2) 

𝑟1(𝑡) denotes residual signal related to the 
first IMF. 𝑟1(𝑡) must be used as a new dataset 
signal and the sifting process must be repeated 
in a way that each residual signal for the 𝑖th 
IMF, i.e. 𝑟𝑖(𝑡), is used as a new dataset signal 
for subsequent steps until the residual signal 
𝑟𝑁(𝑡) become a monotonic function. The IMF's 
{𝑐𝑖(𝑡)}𝑖=1

𝑁  include different frequency bands 
ranging from high to low. The original signal is 
reconstructed as the summation given by 

     
1

 
N

i N

i

x t c t r t  (3) 

2.2. Multivariate EMD 

Standard EMD calculates the local mean by 
averaging the upper and lower envelopes. These 
envelopes are obtained by interpolation of local 
maxima and minima. However, for multivariate 
signals, the value of local maxima and minima 
cannot be directly defined and this makes it 
rather confusing to determine IMF defined by 
oscillatory modes. To overcome these 
problems, multivariate EMD is developed. 
According to this method, n-variate signal is 
regarded as n-dimensional time series. Each 
signal is projected on an appropriately selected 
direction and multidimensional envelopes 
(which will explain in a subsequent paragraph) 
are generated afterward. Then, the average of 
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these envelopes is taken as a local mean of the 
envelopes. After this process to calculate the 
IMFs, previously explained steps 3 to 5 (in 
section 2.1) are used.  

The accuracy of the calculation of the local 
mean with this method depends on how 
uniformly the direction vectors are chosen. The 
direction vector in n-dimensional space can be 
considered as points on the unit (𝑛 − 1) 
dimensional sphere. There are two main 
methods for achieving the uniform sampling 
point sets in the multivariate EMD [22]: (1) 
Uniform angular sampling. In this method, 
uniform angular sampling of a unit sphere in an 
n-dimensional sphere coordinates for a set of 
direction vectors is employed. The resulting set 
of direction vectors spans the whole sphere. 
Although this method makes an easy way to 
generate point sets, it cannot provide a 
completely uniform distribution for 𝑛 > 1, 
because there is a higher density of points at the 
poles of the sphere. (2) A Quasi-Monte Carlo-
based sampling based on low-discrepancy point 
sets (family of Halton and Hammersley 
sequences). Halton and Hammersley are used in 
this paper and are introduced as an example of 
the quasi-Monte Carlo lower deviation 
sequence.  

let 𝑥1, … , 𝑥𝑛 be the first n prime numbers and 
𝑖th sample of a one-dimensional Halton 
sequence, denoted by 𝑟𝑖

𝑥, is given by 

0 1

2 1
  x s

i s

a aa
r

x x x
 (4) 

where the base-x representation of 𝑖 given by 

0 1   s

si a a x a x   .  (5) 

Starting from 𝑖 = 0, the 𝑖 sample of the 
Halton sequence then becomes 

 1 2  nxx x

i i ir ,r , ,r . (6) 

The Hammersley sequence is used when the 
total number of samples, 𝑛, is known a priori; in 
this case, the 𝑖 sample within the Hammersley 
sequence is calculated as 

 11 2  nxx x

i i ii / n,r ,r , ,r  (7) 

By using Halton and Hammersley 
sequences, a suitable set of direction vectors on 
the 𝑛 sphere is generated. Henceforth, 
projections of signals on this direction vectors 

will be calculated. In the following paragraph 
multivariate EMD will be explained briefly. 

Let 𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)] be a 𝑛-
dimensional signal and 𝐷𝑘 = {𝑑1

𝑘, 𝑑2
𝑘 , … , 𝑑𝑛

𝑘} 
correspond to the 𝑘th direction vector in a 
direction set, 𝐷. The multivariate EMD 
algorithm is described as followed: 

1. Choose a suitable set of direction vectors, 
D. 

2. Calculate the 𝑘th projection, 𝑝𝑘(𝑡) of 𝑋 
along the 𝑘th direction where 𝑘 =
1,2, … , 𝐾, and 𝐾 is the total number of 
direction vectors. 

3. Find the time instants, 𝑡𝑖
𝑘, corresponding 

to the maxima of projected signals. 
4. Interpolate [𝑡𝑖

𝑘 , 𝑋(𝑡𝑖
𝑘)] to determine 

multidimensional envelopes, 𝐸𝑘(𝑡). 
5. Calculate the mean by 

   
0

1



 
K

k

k

M t E t .
l

 (8) 

6. Calculate the residual component 𝑅(𝑡) =
𝑋(𝑡) − 𝑀(𝑡). If 𝐷(𝑡)satisfies the 
stopping criterion which explains the 
previous section, then consider 𝑅(𝑡) as an 
IMF then repeat the algorithm until it 
meets the criterion. 

To clarify this MEMD algorithm, Fig. 1 
schematically illustrates the flowchart of the 
multivariate EMD algorithm. 

2.3. Noise-assisted multivariate EMD 

Whenever the input signal for the MEMD 
algorithm is noisy, the mode mixing 
phenomenon is almost inevitable. NA-MEMD 
algorithm is an extension of the MEMD method 
to remove the effect of noise in the input signals. 
The following steps represent the algorithm. 

1. Create an l-channel of uncorrelated 
Gaussian white noise time series which 
have the same length as that of the input 
(𝑙 ≥ 1). 

2. Add noise channels, created in step 1, to 
the input signals which results in the new 
input signal with (𝑛 + 𝑙)-channel. 

3. Decompose the (𝑛 + 𝑙)-channel 
multivariate signal using the MEMD 
algorithm to obtain IMFs. 

4. Discard l channels corresponding to the 
noise from (𝑛 + 𝑙)-variate IMFs and get 
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n-channel IMFs corresponding to the 
original signal. 

3. System Description 

In this section, the studied wind turbine gearbox 
is introduced. The vibration data are 

provided by the National Renewable Energy 
Laboratory (NREL). The wind turbine gearbox 
consists of one low-speed (LS) planetary stage 
and two parallel stages including intermediate 
speed and high-speed stages. The test drive is 
designed for a turbine with a rated power of 750 
kW. The Gearbox has an overall ratio of 
1:81.491. Figure 2 shows characteristic 
frequencies schematically. 

Start

Input Signal x(t)

Choose a suitable set of 

direction vector

Calculate the kth projection

Find time instants

Determine multidimensional 

envelopes 

R is IMF
No
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each component

End
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M t E t
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Fig. 1. Multivariate EMD algorithm flowchart 
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Fig. 2. Characteristic frequencies of the gearbox 

 

(a)

(b)

 

Fig. 3. Time-domain vibration signal from sensor AN7 for (a) healthy (b) faulty condition (50 000 samples are plotted) 
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Fig. 4. IMF of the healthy signal of sensor AN7 by MEMD algorithm 
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Fig. 5. FFT of first eight IMFs of signal from sensor AN7 

4. Experimental results 

To implement the NA-MEMD algorithm on the 
signals, three noise channels are added to the 
original signals. Noise signals are white 
Gaussian signals and the corresponding power 
is -10 dB. 

4.1. Healthy condition 

To diagnose a fault in the rotary machine, the 
healthy condition of the system must be studied 
and identified for the comparison of the faulty 
condition. Figure  3 shows time-domain 
vibration data from sensor AN7 for healthy and 
faulty conditions. The wind turbine gearbox is 
planetary and its time-domain features are very 
complicated. As it is seen, finding faults from 
the time-domain representation of the wind 
turbine gearbox is not practical.  

As was mentioned before, eight sensors 
collect the vibration data and with the help of 
these data, multivariate EMD can be exploited. 
Figure 4 depicts the decomposed healthy 
signals with the NA-MEMD algorithm for AN7. 
The last IMF must be a monotonic function 
which is illustrated in this figure. To evaluate 
signals and extract features from them, each 
IMF is investigated in the frequency domain. 
Figure 5 illustrates the first eight IMFs of the 
healthy signal of sensor AN7. As it is seen, in 
some IMFs there are some peaks in some 
particular frequencies. These frequencies are 

rotating and meshing frequencies of the wind 
turbine gearbox. As will be discussed in the 
following section, faulty signals have these 
kinds of peaks. To distinguish between healthy 
and faulty peaks, healthy and faulty signals must 
be compared with each other.  

As was mentioned, in this study in addition 
to the MEMD algorithm, fault detection using 
discrete wavelet decomposition is investigated 
and a comparison between these two methods is 
conducted. Figure 6 shows the decomposed 
healthy signal using discrete wavelet transform.  
Mother wavelet db4 is used [28] for 
decomposition [25] since it shows the best 
results in comparison with other groups of 
mother wavelets. 

4.2. Faulty condition 

In this section, vibration signals of the wind 
turbine with faults are investigated, and for a 
better understanding of vibration signals, a 
comparison between faulty and healthy signals 
is done. Also, discrete wavelet decomposition is 
performed to evaluate the MEMD algorithm in 
comparison with the well-known WT method 
for fault detection of rotating machines. 

Figure 7 illustrates the 6th IMFs of each 
signal. As it was mentioned previously, an 
advantage of multivariate EMD over standard 
EMD is that each IMF group has similar 
characteristics. This helps to extract fault 
features more conveniently and it is an 
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important characteristic to extract fault features, 
automatically (e.g. for intelligent fault detection 
methods). Figure 7 verifies this matter. Since 
each IMF consists of an almost certain 
frequency, each IMF is used to extract a specific 
fault. In the 6th IMF for each signal, there is a 
peak at gear mesh frequency (661 Hz) and this 
frequency feature exists in all the same IMF 
groups for each signal. In contrast to MEMD 
output results, high-speed shaft fault features 
fluctuate between the 6th and 7th IMFs that is 
resulted from the EMD algorithm; therefore, 
one cannot be sure that a specific fault feature 

exists in a specific IMF group. In another word, 
because of the same frequency characteristics, 
each IMF group can be regarded as a fault 
feature in the MEMD algorithm which is a 
privilege over the EMD algorithm. 

To this point, the advantages of the MEMD 
algorithm over EMD are demonstrated. From 
now on, the capabilities of the MEMD 
algorithm to extract fault features are 
investigated. The studied wind turbine gearbox 
has three major faults. In the subsequent 
sections, each fault is examined individually. 

 

FF
T

 

Fig. 6. The second level of approximation of a healthy signal and its FFT 

 

Fig. 7. Comparison of 6th IMF of signals from each sensor 
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 High-speed stage faults 

The most severe fault is in this part of the wind 
turbine gearbox. The high-speed shaft rotates at 
1800 rpm (30 Hz).  The high-speed pinion has 
22 teeth and the meshing frequency for high-
speed gears is 𝑓𝐻𝑆𝐺𝑀 = 660 Hz. Figure 8 
demonstrates the comparison between two 
faulty and healthy decomposed signals using the 
NA-MEMD algorithm. As is seen from this 
figure, there is a peak at 661 Hz which is very 
close to the meshing frequency of a high-speed 
shaft (𝑓𝐻𝑆𝐺𝑀). The point is that both healthy and 
faulty IMFs have this peak but the peak for 
faulty signals IMF has a higher amplitude than 
the peak of healthy signals IMF. Therefore, it is 
an indication that there might be a fault in the 
high-speed shaft gears. By looking closely at the 
figure, a peak is seen at  𝑓𝐻𝑆𝐺𝑀 + 𝑓𝐻𝑆 =691.2 
Hz where, 𝑓𝐻𝑆 = 30 Hz is a high-speed shaft 
frequency. 

It can be concluded that the probability of 
fault existence in high-speed pinion is high. 
Discrete wavelet decomposition is done to 
extract high-speed stage fault features. Figure 9 
shows a comparison between the healthy and 
faulty second-level approximation of the AN5 
signal. There are peaks at meshing frequency 
and its harmonics. As it was discussed in the 
previous paragraph, since there are peaks at 
meshing frequency and its harmonics and these 

peak amplitudes are much higher than healthy 
condition harmonics, it can be concluded that 
there might be faults in the high-speed stage 
gears. Sidebands are very distinguishable in this 
method. These sidebands show which gear in 
the high-speed stage contains some faults in it. 
Since the sideband frequency is 30 Hz which is 
a high-speed shaft frequency, there are faults in 
the high-speed pinion. 

To make the comparison more 
understandable and more quantitative, a new 
amplitude factor is introduced to distinguish if a 
peak in the signal’s IMFs presents a fault or not. 
The factor is the division of the amplitude of the 
peak at a certain frequency in a faulty signal by 
the amplitude of the peak at the same frequency 
in the healthy signal. In Table 1 this factor is 
calculated for the 6th IMF of all the eight 
sensors’ signals. According to this table, 
amplitude factors for wavelet coefficient are 
higher than IMFs which means that high-speed 
stage faults are more distinguishable by using 
discrete wavelet transform decomposition. 
However, an important point must be 
considered. IMFs contain almost a certain 
frequency. In other words, each IMF has one 
distinguishable peak and this makes it more 
convenient to detect fault by MEMD. To 
determine the location of fault more precisely, 
sidebands are helpful and these sidebands are 
more recognizable by wavelet coefficients. 

fHSGM

fHSGM
+ f

HS

 

Fig. 8. Comparison between 6th IMF of AN5 sensor for healthy and faulty conditions 
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Fig. 9. FFT of the second level of discrete wavelet decomposition of healthy and faulty signals of AN5 sensor 

 Planetary stage faults 

There is another fault in the planetary stage 
which is investigated in this section. The 
meshing frequency of the planetary gearbox is 
𝑓𝑃𝐿𝑇𝐺𝑀 = 36.4 Hz. A comparison between the 
12th IMFs of healthy and faulty signals from 
sensor AN3 is illustrated in Fig. 10. As it is 
obvious in this figure, there is a peak both in 

healthy and faulty IMFs. This peak is at the 
high-speed shaft frequency and is another sign 
of the existence of faults in the high-speed stage. 
There is a peak at planetary meshing frequency 
in the faulty IMF which has a higher amplitude 
than a healthy signal. This indicates that there 
might be faults in the planetary stage of the 
gearbox system. The post-test examination 
confirmed that there are scuffing and polishing 
damages in the ring gear [29].  

Table 1. Amplitude factor for 6th IMF of signals and second level DWT coefficient 

 Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 
NA-MEMD 3.34 2.96 3.11 3.42 2.76 3.06 2.87 3.25 

DWT 4.33 3.98 4.17 4.36 3.68 4.28 3.88 4.04 
 

fPLTGM

 

Fig. 10. Comparison between healthy and faulty signals of AN3for 12th IMF  
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Discrete wavelet decomposition is 
performed for inspecting the existence of faults 
in planetary. To detect these faults, sensors AN3 
or AN4 are preferred and they have more 
precise information. Figure 11 shows the 
comparison between wavelet coefficients of 
healthy and faulty signals. For the calculation of 

wavelet decomposition, mother wavelet db4 has 
been used. According to the figure, there is a 
peak at the high-speed shaft frequency and a 
peak at the planetary meshing frequency. Peak 
amplitude in the faulty signal is higher than the 
healthy signal and thus fault existence in the 
planetary gearbox is concluded. 

fPLTGM

 

Fig. 11. Comparison of 8th level decomposition of healthy and faulty signals of AN3 in the frequency domain 

Table 2. Amplitude factor for 12th IMF of signals and 8th level wavelet coefficient 

 Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 
NA-

MEMD 
2.16 2.24 2 1.97 1.92 1.84 1.84 1.83 

DWT 1.26 1.31 1.02 1.10 1.09 1.08 1.07 1.08 

fHSS-C bearing

 

Fig. 12. Comparison between 8th IMF of healthy and faulty signals of AN7 
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fHSS-C bearing

 

Fig. 13. Comparison of 5th level decomposition of the healthy and faulty signal of AN7 in the frequency domain 

Table 3. Amplitude factor for 8th IMF of signals and 5th level wavelet coefficient 

 Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 
NA-

MEMD 
3.58 3.67 3.54 3.45 3.7 3.74 3.63 3.63 

DWT 1.95 1.98 2.01 2.01 2.23 2.26 2.19 2.17 

Table 4. The energy of three different IMFs for sensor signals in healthy conditions 

 Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 
6th IMF 315.3a 304.8 328.9 335 344.4 329.1 333 324 
8th IMF 98 91.3 92.6 94 87.9 90.3 97.5 89.8 

12th IMF 67.4 69.8 64.5 61.5 61.4 67.4 66.9 64 
a The energy unit is 𝑚2 𝑠3⁄  (acceleration2×time) which is not a physical unit for energy. This energy is divided by impedance so that 
dimension would be equivalent to physical science. 

Table 5. The energy of three different IMFs for sensor signals in faulty conditions 

 Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 
6th IMF 417.6a 405.6 420.1 425.3 421.2 433.2 419.5 418.7 
8th IMF 120 133.6 128.8 124.3 127.1 111.5 123.3 124.9 

12th IMF 84.5 87.9 89.5 83 81.2 79.6 86.6 90.3 
a The energy unit is 𝑚2 𝑠3⁄  (acceleration2×time) which is not a physical unit for energy. This energy is divided by impedance so that 
dimension would be equivalent to physical science. 

The amplitude factor is used to understand 
which method can detect faults in planetary 
gearbox more precisely. The amplitude factor 
for the 12th IMF and 8th level wavelet coefficient 
of each of the eight signals are presented in 
Table 2. According to this table, the amplitude 
factor for each signal in the MEMD algorithm is 
higher than the amplitude factor for each signal 

in the DWT method. So multivariate EMD 
algorithm can detect faults in the planetary 
gearbox more precisely and there is more 
insurance in the existence of a fault in the 
planetary gearbox by using multivariate EMD. 
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 High-speed shaft bearing fault 

Another dominant fault in this gearbox system 
is the high-speed shaft bearings fault. Inner race 
frequency of bearing is  𝑓𝐻𝑆𝑆−𝐶 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 345.3 

Hz. From Fig. 12, there is a peak at the 
frequency of 356.6 Hz which is very close to the 
𝑓𝐻𝑆𝑆−𝐶 𝑏𝑒𝑎𝑟𝑖𝑛𝑔. The difference between the 
amplitude of the peak at this frequency for the 
healthy and faulty signal is distinguishable 
(amplitude factor is 3.7). Therefore, according 
to the multivariate EMD analysis, it can be 
concluded that the possibility of fault existence 
at the inner race of HSS-C bearing is high. 
Fig. 13 shows the comparison between the 
wavelet coefficient of healthy and faulty 
signals. There is a peak both in the healthy and 
faulty signal at the inner race frequency of HSS-
C bearing (𝑓𝐻𝑆𝑆−𝐶 𝑏𝑒𝑎𝑟𝑖𝑛𝑔). As can be seen, 
peak amplitude is not as high as previous peaks 
for other characteristic frequencies. Generally, 
peak amplitude in bearings is lower than in 
gears which makes feature extraction more 
challenging.  

Amplitude factors for 8th IMF and 5th level of 
wavelet coefficient are listed in Table 3. 
According to this table, amplitude factors for 
multivariate EMD are higher than DWT. Also, 
as was mentioned before, the peak amplitude in 
the wavelet coefficient is low and opposed to 
IMF peaks. Bearing fault detection is more 
practical by using than using DWT. 

Remark 

The concentration of this study is on fault 
detection of wind turbine gearbox which means 
locating faults in the system. The energy of IMFs 
driven from signals can be helpful to just focus 
on condition monitoring of this system. 
Comparison between the energy of healthy and 
faulty IMF leads to perceive if the system is 
faulty or not and subsequent maintenance actions 
can be followed afterward. Table 4 shows the 
energy of three IMFs of each healthy signal and 
Table 5 is for the faulty one. It should be noted 
that the energy of the signal is calculated over a 
band frequency of zero to 20 kHz. By evaluation 
of these two tables, it can be concluded that there 
might be a fault in the system, but fault location 
and characteristics cannot be excluded from 
these results.  

5. Discussion and Conclusion   

In this paper, the multivariate empirical mode 
decomposition algorithm for fault detection of 
wind turbine planetary gearbox is investigated 
and also the capability of this algorithm with the 
discrete wavelet transform is compared. 
Multivariate EMD is employed to decompose 
the signals into their intrinsic mode functions. 
Vibration data is obtained from eight sensors 
located in different places on the wind turbine 
gearbox. The high-speed stage, planetary stage, 
and high-speed shaft bearings are the three 
gearbox faults. Through numerical and practical 
applications in the fault detection of wind 
turbine gearbox and bearings, it has been proved 
that NA-MEMD outperforms standard EMD 
algorithm, because both the characteristic 
frequencies and fault frequencies are extracted 
from the same IMF groups. This characteristic 
of the MEMD algorithm can be used to extract 
fault features automatically. Collecting signals 
by using multiple sensors from different 
locations of the gearbox system and the use of 
multivariate EMD to analyze signals, leads to 
comprehensive information of all frequency 
components related to the wind turbine gearbox 
and bearings. This information is profitable and 
useful to extract fault features from the system. 
To remove the influence of input signal noise, 
NA-MEMD is exploited. In order to have a 
comparison between NA-MEMD and DWT, the 
amplitude factor is defined. This factor shows 
the capability of the NA-MEMD algorithm in 
detecting fault features in comparison with one 
of the most common methods of signal 
processing. In analyzing a signal in the 
frequency domain, all peaks are not signs of 
fault in the system and therefore, it must be 
compared to the healthy condition. By using the 
amplitude factor criterion, it is concluded that 
multivariate EMD can extract fault features 
from the signals more conveniently than 
discrete wavelet decomposition, especially 
when dealing with bearing faults, since their 
peak amplitudes in fault frequencies are not as 
high as gearbox fault amplitudes. Among the 
three faults, the high-speed stage fault is more 
severe, so MEMD and DWT detect this fault 
precisely. When the system is complex, 
diagnosis of a specific fault is not easy. For 
example, planetary stage fault is more 
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recognizable by using the MEMD algorithm. 
Bearing fault peak amplitudes are lower in 
comparison with other faults in the wind turbine 
gearbox. MEMD has shown its advantage in the 
diagnosis of bearing faults in this system when 
the amplitude factor is compared for each 
method. 
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