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ABSTRACT    

Between different sources of renewable energy, wind energy, as an 
economical source of electrical power, has undergone a pronounced 
thriving. However, wind turbines are exposed to catastrophic failures, 
which may bring about irrecoverable ramifications. Therefore, they 
necessarily need condition monitoring and fault detection systems. 
These systems aim to reduce the number of attempts operators are 
required to do through the use of smart software algorithms, which are 
able to understand and decide with no human involvement. The 
gearboxes are usually responsible for the WT breakdowns. In this paper, 
convolutional neural networks are employed to develop an intelligent 
data-based condition-monitoring algorithm to differentiate healthy 
and damaged conditions that are evaluated with the national 
renewable energy laboratory (NREL) GRC database on the WT gearbox. 
Since it is much easier for convolutional neural networks to extract clues 
from high dimensional data, time-domain signals are embodied as 
texture images. Results show that the proposed methodology by 
utilizing a 2-D convolutional neural network for binary classification is 
capable of classifying the NREL GRC database with 99.76% accuracy. 
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1. Introduction 

The wind power industry is quickly expanding. 
However, due to the severe working conditions, 
wind turbines (WTs) are still experiencing a 
myriad of failures. This will end up increasing 
the energy price and reducing their reliability 
[2]. With numerous components in WTs, faults 
can appear in any of them, which will cause 
either end of WT operation or damage other 
elements. Faults in the major drive train 
components including the main shaft, gearbox, 
and generator, can cause substantial economic 
damage. Annualized failure frequency [3] of 
WT components is shown in Fig. 1. 
 

 Corresponding author: Moosa Ayati 
School of Mechanical Engineering, College of 
Engineering, University of Tehran, Tehran,Iran  
Email: m.ayati@ut.ac.ir 

As can be seen, the gearbox, with a high 
downtime per failure, is one of the critical 
components. Gearbox size and its robust 
connection to other parts make it more difficult 
to access, repair or replace. Therefore, it is 
indispensable to enhance the reliability of WT’s 
gearbox, as the second most damage susceptible 
drive-train component, in order to ensure an 
efficacious performance of mechanical 
transmission systems. In this regard, using 
reliable monitoring and diagnosis systems for 
gearboxes is of great importance. 

Conventional algorithms for evaluating 
signals and feature extraction including model-
based approaches for condition monitoring and 
fault   detection   (CMFD) [4]  require  complex 
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Fig. 1 Annual failure frequency and corresponding downtime for several WT components [3] 

 

engineering knowledge and a thorough 
understanding of system performance. Further, 
the established model and rules may vary over 
the course of time. Consequently, the CMFD 
systems will experience inaccuracies and biases 
that bring about poor performance. However, 
the recently introduced machine-learning 
algorithm and powerful processors have opened 
up a new horizon for improving and developing 
intelligent monitoring systems without human 
intervention [5]. While data-based approaches 
have been getting attention for developing 
reliable automatic health monitoring systems, 
they require robust algorithms to extract 
valuable information from available data [6]. 
Deep learning methods have been widely used 
in condition monitoring systems [7] due to their 
ability to build complex nonlinear functions. 
These algorithms can learn the patterns of 
various faults from raw [8] or pre-processed 
signals [9] as well as the extracted features [10]. 
Different neural network architectures achieved 
outstanding results for automatic and robust 
monitoring of WT bearings and gearbox [11-
13]. This paper introduces a novel method for 
WT gearbox health assessment using 
convolutional neural networks (CNNs), which 

has made excellent triumphs in computer vision 
tasks and has also drawn dramatically growing 
attention in automatic CMFD systems as well.  
[14] Demonstrated one of the earliest examples 
of CNN-based models for CMFD by evaluating 
the health condition of bearings. They obtained 
vibration signals through two perpendicular 
accelerometers. To compute the scores for four 
classes, they used the discrete Fourier transform 
of normalized signals as input. Sun et al.[15] 
detected gear faults using a CNN model applied 
on the multiscale signal features that 
were extracted using a dual-tree complex 
wavelet transform. Jing et al. [16] utilized a 1-D 
CNN for gearbox fault detection based on 
frequency features of vibration signals and the 
results are compared with time-frequency data, 
frequency spectrum, and raw data. In  [17], 
authors proposed a training interference for 
CNN to detect the bearing faults under various 
working conditions and noise presence. Bearing 
faults include: ball fault, inner race fault, and 
outrace fault. They used a 1-D CNN where drop 
out is applied on the kernel of the first layer. The 
experiments are performed on raw Case 
Western Reserve University (CWRU) Bearing 
Data. While most studies propose 1-D CNN 
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architectures, recently, digital images are 
introduced for some engineering applications 
including health monitoring. Digital grayscale 
images [18], for instance, are employed for 
induction motors fault diagnosis based on 
binary texture analysis. Hoang and Kang [19] 
and Wei et al. [20] developed a fault detection 
method for bearings using vibration texture 
images. Using texture images, [21] offered an 
approach fault diagnosis of WT actuators and 
sensors. Statistical, Gabor, wavelet, and 
granulometric features are extracted and faults 
are detected using five classification algorithms 
rather than the CNN algorithm. 

In this study, a gearbox health assessment 
approach has been conducted which is based on 
vibration signals prepared by the National 
Renewable Energy Laboratory (NREL). The 
final intent is to derive a binary classificatory for 
identifying healthy and damaged conditions. It 
is an automatic data-based monitoring method 
that requires no real-time human intervention or 
prior feature extraction. The utilized vibration 
acceleration data originated from healthy and 
damaged gearboxes of a test WT. To propose 
the algorithm mentioned above, digital images 
constructed based on the time domain signals 
are used. Afterward, images are used to train a 
CNN model. Vibration signals have been 
dominantly contemplated in condition 
monitoring of WT gearboxes. Model 
performance shows the superiority of this 
methodology. It is capable of classifying the 

NREL gearbox benchmark with 99.76% 
accuracy.  
 
2.Convolutional Neural Networks 
 
CNNs are the most popular neural architectures 
in computer-vision applications. They are 
capable of extracting and learning the best 
classification features from unprocessed data. 
Since the feature extraction and decision-
making processes are combined, the 
computational cost is comparatively low in 
comparison to other techniques. Three major 
layers comprise a comprehensive CNN 
structure: a convolutional layer, a pooling layer, 
and a fully linked layer. 

Every single convolution layer has a number 
of learnable filters that affect receptive fields 
and extracts local features of the input using the 
shared weights while sliding across the input. 
This layer is followed by an activation function 
that will generate the output. The most common 
activation function is rectified linear unit 
(ReLU)  that computes the function 𝑓(x) =
max⁡{0, x}, and applies elementwise non-
linearity to the CNN [23] as well. Convolution 
layers are usually followed by a pooling layer 
that aggregates the extracted information. The 
most frequently used aggregation method is the 
max-pooling operation that finds the maximum 
pixel value in receptive fields and results in 
translation invariance [23]. After extracting 
useful features through convolution and pooling 
layers, a fully connected network collects 
features and computes the class scores. In the 
output layer, the softmax activation function is 
used to find the probability of each class. Figure 
2 shows the CNN architecture [24]. 

Convolution
+ ReLU

Pooling Fully ConnectedConvolution
+ ReLU

Pooling

} Output

 
Fig. 2 convolutional neural network architecture
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3.Imaging Time-Series 
 
Images are informative data formats that 
provide the model with intricate structures and 
correlations within time. Further, converting 
signals into images can mitigate the noise 
influence, because it will be represented as light 
in the image [21]. Also, the development of 
GPUs resulted in powerful processing units that 
can provide the required speed for the image-
based condition monitoring systems [25]. In this 
paper, the signal texture imaging method is 
utilized to represent data as images.  The 
conversion scheme is illustrated in Fig. 3. As 
can be seen, small patches of signal with the 
length N are used to construct images. More 
details can be found in [18]. 

 
4.Experimental Implementation 
 

4.1.NREL Gearbox Test 
 
NREL has investigated the main causes which 
result in the premature failure of WT gearboxes 
[26] intending to extend their lifetime and 
provide the wind industry some benchmarking 
datasets benefiting research, development, 
validation, verification, and advancement of 
vibration-based wind condition monitoring 
techniques. This section describes the data 
collection effort and shared datasets. Under 
dynamometer tests, the vibration data were 
collected by accelerometers from a damaged 

gearbox and a healthy gearbox of the same 
design. The test turbine is a stall-controlled, 
three-bladed, upwind turbine with a rated power 
of 750kW. 
 

4.2.Gearbox Description  
 
Test gearbox has an overall ratio of 1:81.49 and 
is made up of one low-speed planetary stage 
(LSS) and two parallel stages, containing one 
intermediate-speed stage (ISS), and one 
High-Speed stage (HSS). The LSS and HSS are 
connected to the rotor and generator 
respectively, as is shown in Fig. 4. More details 
about the internal elements of the test 
gearboxes, gear dimensions, etc. could be found 
in [27]. 

The healthy gearbox was only tested at the 
Dynamometer Test Facility (DTF) at NREL. 
The damaged gearbox was sent to a wind farm 
for field testing in which it experienced two oil-
loss events that damaged its internal bearings 
and gears. The gearbox was later disassembled 
for analyzing the detail of the actual damage that 
occurred to the test gearbox. Scuffing, 
overheating, fretting corrosion, and polishing 
wear are some of the observed damages in the 
test gearbox [28]. After installing the condition 
monitoring equipment, it was tested at DFT with 
controlled loads which would not lead to any 
cataclysmic failure of the gearbox. In addition, 
the damages are detectable through vibration 
analysis. 
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Fig. 4 Test gearbox interior layout [27]  

 
4.3.Vibration Data  

 
Accelerators were installed on the gearbox 
housing and vibration data was collected at 40 
kHz per channel. The accelerometers were 
located as listed in Table 1[27]. Furthermore, 
data is provided in engineering units and does 
not have to be adjusted, scaled or modified.  
In DTF at NREL, The test WT's full nacelle and 
drive train were placed in such a way that the 
nacelle was secured to the floor without a hub, 
rotor, or yaw bearing [27]. Also, an authentic 
field control system was enlisted for providing 
start-up and system safety. In this dynamometer 
test, run-in was performed at 50% of rated 
torque and the generator was activated as it 
approached the 1800 rpm synchronous speed 
with the 22.09 rpm main shaft speed. More 
details about the DTF could be found in [27]. 
The data files are provided in ten 1-minute data 
sets for the aforementioned test condition for 
each gearbox. Acquired healthy and damaged 
signals are both similar to noise signals and they 
have nearly the same amplitudes. Hence, there 
is not any cognizable difference in the signals 
plot [9]. 

4.4.Imaging the signals 
 

Each vibration signal is split into 20 non-
overlapping sections with the same length so as 
to acquire enough train/test data. Texture 
images are obtained using the method 
explained, and each element is considered as 
one pixel when converting the matrix to an 
image. Hence, the values of each element define 
the color of each pixel. An individual segment 
of signals is used to construct images of the size 
M = N = 224. Correspondingly, the vibration 
data of each sensor is converted to 20 images, 
which means every 1-minute dataset contains 
160 images. Hence, 160 × 10 = 1600 images, 
with a size of 224 × 224 pixels, are available for 
each class (2 classes). All of the images (AN1 to 
AN8) are simultaneously fed to the proposed 
CNN in the training/testing process. Fig. 6 gives 
an example of images for healthy and damaged 
gearboxes. As shown in the figure, 
distinguishing the images of two classes is not 
readily possible. 
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Fig. 5 Example vibration images 

4.5.CNN Hyper-parameters 
 
While model parameters vastly affect the model 
performance, there is no established method to 
tune the hyper-parameters. In this experiment, 
the model complexity is increased after each 
training and inference to get a convincing 
accuracy. Finally, the proposed model has four 
convolutional and max-pooling layers followed 
by two fully connected layers. Table 2 
summarizes the selected parameters for the 
convolutional and pooling layers. The 
experiments were implemented on an NVIDIA 
GEFORCE GT 630 M-based GPU system. 
 

5.Results and Discussion 

 
In this work, an approach for condition 
monitoring of wind turbine gearbox is proposed 

using convolutional neural network. To train the 
model, the gearbox vibration dataset provided 
by NREL is used. Vibration texture images are 
utilized in the experiments. In addition, the 
cross-entropy loss function is chosen to train the 
CNN model. The metrics to measure the model 
performance are classification accuracy, loss 
function, confusion matrix, and receptive 
operating characteristic (ROC) curve. Figure 6 
shows the classification accuracy and loss 
function. Accuracy measures the percentage of 
correctly classified images. The proposed 
method can diagnose the damaged gearbox with 
an astounding final accuracy of 99.76%. As it 
can be seen in Fig. 6, accuracy and loss function 
values become constant at last epochs, and 
proposed CNN could reach a convergence 
point.

 

Table 1 . Proposed CNN model structure 

No. Layer Name Filter Size/Stride Output Size Padding 

1 Convolution1 5 × 5 × 60/1 × 1 120 × 120 × 60 Yes 

2 Max-pooling1 2 × 2 60 × 60 × 60 No 

3 Convolution2 3 × 3 × 50/1 × 1 60 × 60 × 50 Yes 

4 Max-pooling2 2 × 2 30 × 30 × 50 No 

5 Convolution3 3 × 3 × 40/1 × 1 30 × 30 × 40 Yes 

6 Max-pooling3 2 × 2 15 × 15 × 40 No 

7 Convolution4 3 × 3 × 20/1 × 1 15 × 15 × 20 Yes 

8 Max-pooling4 2 × 2 7 × 7 × 20 No 

9 Fully Connected1 400 1 × 400 No 

10 Fully Connected2 200 1 × 200 No 

11 Softmax 2 1 × 2 No 
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(a)                                                                            (b) 

Fig. 6 (a) accuracy, (b) loss function of the proposed CNN 

 

The confusion matrix can provide a better 
analysis of the model performance.  It 
demonstrates the correctly classified and 
misclassified cases. From 420 images 
associated with the damaged gearbox, 99.76% 
(419 images) are correctly classified and 0.24% 
(1 image) are classified as a healthy gearbox. 
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Fig. 7 Confusion matrix 

 
ROC curve is another measurement for 
evaluating the model performance which can 
indicate the diagnostic capability of a binary 
classifier. The area under the ROC (AUC), 
calculated based on the confusion matrix, shows 
the predictive performance of the classifier and 
can vary between 0.5 (random classifier) and 1 
(ideal classifier). ROC curve for the proposed 
algorithm is shown in Fig. 8 and the exact value 

of AUC is 0.9976.  Each image relating to the 
healthy gearbox that is classified truly is 
considered as true positive (TP). On the other 
hand, healthy images which are classified 
wrongly, are considered as false negative (FN). 
If an image relating to the damaged gearbox is 
classified correctly, it will be considered as a 
true negative (TN), and if not, it will be counted 
as a false positive (FP). Therefore, true positive 
rate (the proportion of healthy images which are 
correctly classified) and false positive rate (the 
proportion of images that are wrongly identified 
as such) could be calculated as 

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1) 

𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(2) 

Clearly, in many scenarios, it will be very 
difficult to achieve a rich dataset for training. 
Therefore, in another similar simulation, the 
proposed CNN has been trained using fewer 
training images (about 900 images) in order to 
evaluate its capability, and in the end, it 
produced similar results. These findings 
demonstrate that CNN performs admirably 
when dealing with images of vibration signals. 
The promising results show that CNNs can help 
in automating the CMFD systems and increase 
the reliability of their decisions. 
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Fig. 8 ROC curve 

 

Clearly, in many scenarios, it will be very 
difficult to achieve a rich dataset for training. 
Therefore, in another similar simulation, the 
proposed CNN has been trained using fewer 
training images (about 900 images) in order to 
evaluate its capability, and in the end, it 
produced similar results. These findings 
demonstrate that CNN performs admirably 
when dealing with images of vibration signals. 
The promising results show that CNNs can help 
in automating the CMFD systems and increase 
the reliability of their decisions.  
 
6.Conclusion 
 
The intent of this paper was to draw attention to 
the development of a feature learning algorithm 
to autonomously classify different conditions 
with no more required manual feature 
extraction. A convolutional architecture with 
vibration texture images as input is utilized to 
monitor the health condition of a WT gearbox. 
Signal texture images, that are built based on the 
magnitude of a signal, are employed to represent 
time series as images.  Referring to the results 
of the experiments, CNN, as a dominant feature 
extractor and classifier, achieved 99.76% 
accuracy and has high robustness. It catches the 
periodic features of the vibration signals 
effectively. This shows the capability of this 
algorithm in solving automatic health 
monitoring issues based on unprocessed signals.  
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